

Faculty of Engineering and Technology

Master of Software Engineering (SWEN)

Detailed Proposal

Test Cases Prioritization for Component-Based Front End Technologies

 تحدید الأولویات لحالات فحص منتج برمجي یستخدم تقنیة واجهة مستخدم مبنیة من خلال عمارة المكونات

By

Student Name: Hiba Ghannam

Student Number: 1165305

Supervised By:

Dr. Abdel Salam Sayyad

Dr. Sobhi Ahmad

A thesis submitted in fulfillment of the requirements for the

degree of Master of Science in Software Engineering at Birzeit University, Palestine

October 23, 2020

Approved by the thesis committee:

Dr. Abdel Salam Sayyad, Birzeit University

__

Dr. Sobhi Ahmad, Birzeit University

__

Dr. Samer Zein, Birzeit University

__

Dr. Majdi Mafarja, Birzeit University

__

Date approved:

__

Declaration of Authorship

I, Hiba Ghannam, declare that this thesis titled, “Test Cases Prioritization for

Component-Based Front End Technologies Web Application” and the work presented in it

are my own. I’m confirming the following:

● This work was done wholly or mainly while in candidature for a master degree at

Birzeit University.

● Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

● Where I have consulted the published work of others, this is always clearly attributed.

● Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

● I have acknowledged all main sources of help.

● Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Abstract

Test cases prioritization is an important action that has to be done during the testing

phase within the software development life cycle. It helps to add more focus on test cases that

have high priority. In addition, it helps to discover defects in early stages therefore cost and

time will be managed in an effective way. Recently, for building web applications,

component based architecture frontend frameworks are the most popular used technologies.

Therefore new test cases prioritization could be connected with frontend components

depending on components reusability and their business requirements. In previous research,

several solutions were proposed for test cases prioritization. The gap here, that most of these

solutions were built for regression testing. Few proposed solutions have been generated for

new test cases, while these solutions are not considering the new frontend technologies like

React or Angular.

This research presents a framework as an automated solution for prioritization of new

test cases. Where those test cases represent a web application that is going to be developed

using component based architecture frontend frameworks. The prioritization problem has

been considered as a multi objective optimization problem where trade-off has to be done

between different objectives. Therefore, the proposed solution in this research uses four

genetic algorithms: NSGA-II, IBEA, MOCell and SPEA2. During this research, five datasets

have been created since there are no available datasets. First one has been created manually,

while the others have been created using a random approach. The randomly generated

datasets have been created to generate different dataset sizes and this has provided an

opportunity to study the impact of dataset size on results. This proposed random approach for

creating datasets, can help researchers to create any dataset with any required size for testing

any similar problem.

Several experiments have been done during this research and using the five datasets.

Results for all datasets approved that 30 seconds as minimum execution time is enough to all

mentioned algorithms. In addition the quality is close to all algorithms. The results also

approved that having limited time for testing generates a high quality solution in less than 30

seconds as execution time for any mentioned algorithm. On the other hand, more available

time for testing leads to a more complex problem that reduces the solutions quality.

 الملخص
تطویر حیاة دورة ضمن الاختبار مرحلة أثناء به القیام یجب مهمًا إجراءً الاختبار حالات أولویات تحدید یعد

فإنه ، ذلك إلى بالإضافة عالیة. أولویة لها التي الاختبار حالات على التركیز من المزید إضافة على ذلك یساعد البرامج.

، الأخیرة الآونة في فعالة. بطریقة والوقت التكلفة إدارة ستتم وبالتالي ، المبكرة المراحل في العیوب اكتشاف على یساعد

ربط یمكن لذلك المستخدمة. التقنیات أكثر من المكونات على القائمة للبنیة الأمامیة الواجهة أطر تعد ، الویب تطبیقات لبناء

ومتطلبات المكونات استخدام إعادة إمكانیة على اعتمادًا الأمامیة الواجهة بمكونات الجدیدة الاختبار حالات أولویات

هذه معظم أن ، هنا الفجوة الاختبار. حالات أولویات لتحدید الحلول من العدید اقتراح تم ، السابقة الأبحاث في أعمالها.

المقترحة الحلول من قلیل عدد إنشاء تم .regression التراجع أو الانحدار یسمى الاختبار أنواع من لنوع بناؤها تم الحلول

React مثل الجدیدة الأمامیة الواجهة تقنیات الاعتبار عین في تأخذ لا الحلول هذه أن حین في ، الجدیدة الاختبار لحالات

.Angular أو

هذه الاختبار حالات تمثل حیث الجدیدة. الاختبار حالات أولویات لتحدید آلي كحل عمل إطار البحث هذا قدم

تحدید مشكلة اعتبار تم المكونات. على القائمة للبنیة الأمامیة الواجهة عمل أطر باستخدام تطویره سیتم ویب تطبیق

الحل تطویر تم ، لذلك المختلفة. الأهداف بین المفاضلة إجراء یجب حیث الاهداف متعددة مشكلة أنها على الأولویات

إنشاء تم ، البحث هذا خلال .SPEA2 و MOCell و IBEA و NSGA-II جینیة: خوارزمیات أربع باستخدام المقترح

المجموعات إنشاء تم بینما ، یدویًا الاولى المجموعة إنشاء تم بیانات. مجموعات توفر لعدم نظرًا بیانات مجموعات خمس

بأحجام بیانات مجموعات على للحصول العشوائیة بالطریقة البیانات مجموعات إنشاء تم عشوائي. نهج باستخدام الأخرى

العشوائي النهج هذا یساعد أن یمكن النتائج. على البیانات مجموعة حجم تأثیر لدراسة فرصة ذلك أتاح وقد ، مختلفة

مشكلة أي لاختبار مطلوب حجم بأي بیانات مجموعة أي إنشاء على الآخرین الباحثین البیانات مجموعات لإنشاء المقترح

 مماثلة.

نتائج على الحصول تم الخمس. البیانات مجموعات وباستخدام البحث هذا خلال التجارب من العدید إجراء تم

بالإضافة المذكورة. الخوارزمیات لجمیع كافیة التنفیذ لوقت أدنى كحد ثانیة 30 كانت فقد البیانات مجموعات لجمیع متقاربة

وأقرت البحث. في المذكورة البیانات مجموعات جمیع على تطبیقها تم التي الخوارزمیات لجمیع متقاربة الجودة أن إلى

خوارزمیة لأي تنفیذ كوقت ثانیة 30 من أقل في الجودة عالي حل الى سیؤدي للاختبار محدود وقت وجود أن أیضًا النتائج

 مذكورة. من ناحیة أخرى ، یؤدي المزید من الوقت المتاح للاختبار إلى مشكلة أكثر تعقیدًا تقلل من جودة الحلول.

Acknowledgements
I would like to express my special thanks to my supervisor Dr.Abdelsalam Sayyad for

all orientations and special guidance in this research field. I would also like to thank

Dr.Yousef Hassouneh for the important courses, specifically design and architecture that I

returned to during this research several times. Also I want to thank Dr.Samer Zain for the

amazing mobile course, in that time I started to think about frontend technologies and that

definitely helped me to discover the mentioned gap in this research thesis. Thanks also for all

my instructors in the previous amazing experience.

Table of Contents

1. Introduction 1

1.1 Motivation 2
1.2 Problem Statement 3
1.3 Research Objectives 4
1.4 Research Questions 4
1.5 Research Contribution 5

2. Background 7
2.1 Test cases effectiveness and prioritization 7
2.2 Component Based Architecture Front End web applications 9
2.3 Multi Objective Optimization Problem and Solutions 12

2.3.1 Evolutionary Algorithms for Multi Objective Optimization 14
2.3.2 Genetic Algorithm (GA) 15
2.3.3 Nondominated Sorting Genetic Algorithm (NSGA and NSGA-II) 17
2.3.4 Strength pareto evolutionary algorithm (SPEA2) 19
2.3.5 Multi Objective Cellular Genetic algorithm (MOCell) 20
2.3.6 Indicator- Based Evolutionary Algorithm (IBEA) 21
2.3.7 Solutions Evaluations by Hyper Volume 21

2.4 Optimization for Testing 22
3. Related Work 24

3.1 Prioritization Solutions for regression test cases 24
3.1.1 Structural Coverage Based Solutions 24
3.1.2 Fault Detection Based Solutions 26
3.1.3 History Based Solutions 28
3.1.4 Requirements Based Solution 30
3.1.5 Hybrid Approaches 33

3.2 Prioritization Techniques for New Test Cases 36
3.3 Related Work and the Research Gap Summary 38

4. Research Methodology 45
4.1 Facebook Dataset 45
4.2 Solution Design 51

4.2.1 Chromosome Representation 54
4.2.2 Objective Functions 55

4.3 Random Datasets 58
4.4 Development Environment 61

5. Experiment Setup and Run 62
5.1 General Design Structure 62
5.2 Problem definition 64
5.3 Algorithms Runners 70
5.4 Find Violation Algorithm 75

6. Experiment Results and Analysis 80
6.1 Finding the Minimum Execution Time 81
6.2 Available Time Impact on HV value 96

6.3 Impact of remaining time on Algorithm Execution time 102
6.4 Hypervolume (HV) Comparison 103

7. Threats to Validity and Conclusion 110
7.1 Threats to Validity 110
7.2 Conclusion 112
7.3 Future Work 113

Appendix A 121

List of Figures

Figure 2.1 Model View Controller (MVC) Architecture
Figure 2.2 Components reusability in component based frontend frameworks
Figure 2.3 Dominance Example
Figure 2.4 Pareto Front Example
Figure 2.5 General Procedure for finding solution in Multi Objective Optimization
Figure 2.6 Basic pseudocode for the genetic algorithms
Figure 2.7 Pseudo Code for MOCell algorithm
Figure 4.1 Dataset Sample represents test cases and their properties
Figure 4.2 Facebook Component - New Post View
Figure 4.3 Facebook Component - Write Post
Figure 4.4 Facebook Component - View Post
Figure 4.5 High Priority Test Case Properties sample includes dependencies
Figure 4.6 Simple High Priority Test Case Properties sample that does not include
 dependencies
Figure 4.7 Phase 1 objectives and solution result
Figure 4.8 Chromosome Structure Representation
Figure 4.9 Sample from a random dataset with 400 test cases
Figure 4.10 Sample from a random dataset with 1000 test cases
Figure 4.11 Generating the random values using random function
Figure 5.1 TCP problem definition class
Figure 5.2 Algorithms Runners’ Classes
Figure 5.3 Setting the number of variables and objectives
Figure 5.4 Dataset sample from the extracted input file
Figure 5.5 Signature of Read Problem method in TCP problem
Figure 5.6 Signature of Evaluate method in TCP problem
Figure 5.7 Evaluate Algorithm Flow
Figure 5.8 Solutions from several generations with single Run
Figure 5.9 Four solutions were resuled and printed from running an algorithm
Figure 5.10 Pareto Front for the generated solution in Figure 5.9
Figure 5.11 Summarization of Runners Classes Steps
Figure 5.12 Test cases dependencies sample
Figure 5.13 Test Case with three dependencies components from the original dataset
Figure 5.14 Six solutions from random run without marking violations
Figure 5.15 Resulted Solution with Violations

 Figure 5.16 Test case doesn't have violation in another solution

Figure 6.1 SPEA2 implementation with time as a stopping condition
Figure 6.2 HV over time for NSGA-II with fcbk163-dataset
Figure 6.3 HV over time for NSGA-II with 400-dataset
Figure 6.4 HV over time for NSGA-II with 600-dataset
Figure 6.5 HV over time for NSGA-II with 800-dataset
Figure 6.6 HV over time for NSGA-II with 1000-dataset
Figure 6.7 HV over time for IBEA with fcbk163-dataset
Figure 6.8 HV over time for IBEA with 400-dataset
Figure 6.9 HV over time for IBEA with 600-dataset
Figure 6.10 HV over time for IBEA with 800-dataset
Figure 6.11 HV over time for IBEA with 1000-dataset
Figure 6.12 HV over time for MOCell with fcbk163-dataset
Figure 6.13 HV over time for MOCell with 400-dataset
Figure 6.14 HV over time for MOCell with 600-dataset
Figure 6.15 HV over time for MOCell with 600-dataset
Figure 6.16 HV over time for MOCell with 1000-dataset
Figure 6.17 HV over time for SPEA2 with fcbk163-dataset
Figure 6.18 HV over time for SPEA2 with 400-dataset
Figure 6.19 HV over time for SPEA2 with 600-dataset
Figure 6.20 HV over time for SPEA2 with 800-dataset
Figure 6.21 HV over time for SPEA2 with 1000-dataset
Figure 6.22 Assign the available time in problem definition
Figure 6.23 HV boxplot for small value of available time with small dataset size
Figure 6.24 HV boxplot for large value of available time with small dataset size
Figure 6.25 HV boxplot for small value of available time with large dataset size
Figure 6.26 HV boxplot for large value of available time with large dataset size
Figure 6.27 HV quality indicator for fcbk163-dataset
Figure 6.28 HV quality indicator for 400-dataset
Figure 6.29 HV quality indicator for 600-dataset
Figure 6.30 HV quality indicator for 800-dataset
Figure 6.31 HV quality indicator for 1000-dataset

List of Tables

Table 3.1 Summary of prioritization methods and the possibility of using them for this

research

Table 5.1 Initial Runs Setup

Table 6.1 Datasets list and their test cases

Table 6.2 HV over time for NSGA-II with all the research datasets

Table 6.3 HV over Time for IBEA with all the research datasets

Table 6.4 HV over Time for MOCell with all the research datasets

Table 6.5 HV over Time for SPEA2 with all the research datasets

Table 6.6 HV mean for different values of available time

Table 6.7 Captured HV when the remaining time is a small value

Table 6.8 HV mean for 30 independent runs

Table 6.9 HV median for 30 independent runs

Table 6.10 Max and min value for each algorithm with all datasets

Chapter 1. Introduction

Software development life cycle has many stages, it starts from requirements

gathering, design, development, testing and it ends up with deployment [2]. Testing

is defined as a process which is used to discover the potential faults in software

products [4]. The most important value for this phase is finding problems and fixing

them before releasing the software to production. Early discovery for problems

reduces the side effects before these problems are being larger [64]. For testing

execution, test cases have to be prepared by software testers by selecting different

data inputs under different conditions of the program. Each test case has an expected

result which could be specified depending on the requirements [6]. In most cases there

is a limited time for testing, so it's important to specify the test cases priorities that

help to specify the order of test cases in the execution stage. This action helps to

increase the coverage and to discover faults in early stages [1]. Different types of

testing are available, for each type of testing it’s important to know how the coverage

of testing will be [66]. For example several coverage types are available to regression

testing. Regression targets to verify other parts of the system when adding a new

change[11]. On the other hand, not all types are supported with blackbox testing or

with adding a new feature.

In this research a specific prioritization solution is proposed for a specific test

cases prioritization problem that targets test cases prioritization for web application.

Those web applications have to use a component based architecture technology for

building the front end side. These technologies have an impact on test cases priorities

and no previous solutions considered this impact. The test cases prioritization problem

itself is based on requirements coverage and the solution has been built using search

based software engineering. Search based software engineering (SBSE) term was first

proposed by Harman in 2001 [52]. It refers to applying search based algorithms to

solve problems and gaps in software engineering. For software engineering problems

that have multiple objectives and when a tradeoff is required, the test cases

prioritization problem is considered as a search based optimization. On the other

1

hand, optimization refers to finding a solution depending on the required objectives.

In previous research, software optimization problems have been applied in different

fields of software engineering like verification, project planning, cost estimation [54].

59% of published research was done on software testing field testing [53].

Several solutions have been built in previous research for test cases

prioritization, most of these solutions were created based on multi objective

optimization algorithms. The reason behind considering the prioritization process as a

multi objective optimization problem is the need for a trade-off several times between

different objectives of test cases prioritization. Most of the proposed solutions have

been created for doing prioritization of regression test cases that have historical data

[9]. Therefore, prioritization for new test cases is a different problem.

This chapter illustrates the research motivation in section one. Then Problem

statement in details in section two, it’s generally about test cases prioritization for web

applications that are going to be built using component based architecture front end

frameworks applications. After that, three objectives are presented in section three

and two research questions are specified in section four. Then the research

contribution is presented in section five.

1.1 Motivation
Several frontend frameworks have been generated recently based on

component based architecture. React and Angular are examples of these frameworks

that are widely used for building web applications. Considering the main advantage of

having reusable components may affect the test cases priorities. If the test case is

connected with a reusable component that is required for a main business flow, then

for sure it will have high priority. Any defects that might be discovered with that

component will affect several test cases, it may block the testing process for a while.

Hence re-prioritization might be required within the testing phase several times. In

addition, for better requirements coverage and early discovery of defects, considering

the frontend framework is important from the beginning.

In previous research, most available prioritization solutions were created to

support regression testing [9]. While in this research problem, the test cases are going

2

to be created for the first time. These test cases are also connected with specific web

applications technologies, hence, manual testing is the target. This means, using the

available solutions that require code access or previous test cases history is not

applicable. In addition, trying to apply any available solution from previous research

to this test cases prioritization problem, will not consider the new frontend

frameworks technologies. Therefore, this research was motivated by the lack of

solutions for manual test cases prioritization that are going to be built using new

frontend frameworks. Where these frameworks are based on component based

architecture and there is a lack of research about them.

The test cases prioritization process has to increase the requirements coverage

and it has to focus on high priority test cases. Trade-off is required here to choose

between the two mentioned objectives. Therefore, the test cases prioritization problem

is considered as multi objective optimization one and genetic algorithms could be

used to generate the solutions for those kinds of problems..

1.2 Problem Statement
Different requirements changes are expected to be requested from the

customers during the development cycle. This happens frequently when agile

methodologies are being used. In this situation and with the large scale software

applications, a long list of test cases is needed to be prioritized for multiple times. In

modern web applications, component based architecture front end technologies are

frequently used [48]. Different test cases should be designed to test micro small

components, other test cases have to be designed for testing the complex flows. Any

change on components or requirements priorities needs to update test cases priorities

in order to increase the requirements coverage. When the feature of software under

development is a new one, then there is no historical data about test cases or bugs

[25]. This means no previous bugs that have severities or priorities that can be used in

the new test cases prioritization [36]. Therefore, previous prioritization methods that

are based on structural coverage or historical data are not useful for increasing the

requirements coverage. In addition, even the component architecture itself is not new

3

[10], previous prioritization solutions are not considering the new front end

technologies architecture.

For the mentioned gap, the test case itself may validate a single functionality

by using only one component. With other more complex functionality, other test cases

may validate a business requirement that needs to validate several components at the

same flow. Some components are being reused more than others. That means,

validation for complex test cases that have high priorities consumes more time.

Therefore, increasing the requirements coverage for high priority test cases may

reduce the requirements coverage in general. As a result, for this research test cases

prioritization problem there is a kind of tradeoff that has to be done by decision

makers to decide where they have to focus within the available testing time. Hence,

the research problem is considered a multi objective optimization problem. Where the

solution has to increase the requirements coverage for the high priority test cases and

the total coverage at the same time.

1.3 Research Objectives
Two research objectives have been studied in this research for the mentioned

test cases prioritization problem in the previous section:

1. Increasing the business requirements coverage for the new generated manual

test cases with high priority.

2. Increasing the total test cases coverage for business requirements regardless

the priority, within a specific available time for testing.

1.4 Research Questions

In order to achieve the previous objectives under the same condition for

having component based architecture front end technologies, the research have to

answer the following questions:

- RQ1: How to maximize the high priority test cases coverage for business

requirements of new test cases?

- RQ2: How to maximize the total coverage for business requirements of new

test cases?

4

1.5 Research Contribution
The research contributes basically by finding a prioritization solution for long

lists of test cases and restricted or limited time. That has to work with any software

development life cycle, regardless it's agile, waterfall or any other methodology. On

the other hand, the research doesn’t target the short time releases like one or two

weeks. These short releases have a short list of test cases per a specific resource and

without any need for changes. The prioritization solution also doesn’t target

applications that are not going to be built using frontend frameworks that are not

component based. In addition, the target is not regression test cases because there are

a lot of already existing solutions for regression. Even though the designed

prioritization solution can work with regression testing. Implementing the

prioritization solution in this research for the targeted application and environment

has the following contributions:

1. Applying the existing genetic algorithms to find a solution for a new multi

objective optimization problem. The jMetal framework has been used to

implement a prioritization solution for new generated manual test cases.

2. Automated framework solution for new test cases prioritization of web

applications that are going to be developed using Angular, React or any other

component based architecture framework. The targeted test cases are the new

test cases that were designed for new features or new software. This means

these test cases are manual ones. At the same time, the targeted test cases

prioritization problem of this research is a web application that is going to be

built using component - based front end technologies.

3. The generated solution will be used to help decision makers like managers and

product managers to have the best investing of the time under different

circumstances. This could be done by different kinds of re-prioritization

several times.

4. Generating several datasets for component based - front end technologies and

and finding a simple way to create datasets with any size for testing. Even the

component based architecture is not new, but the front end technologies that

have this architecture are new. As a result, there is no dataset that could be

5

used in the experiment, therefore a new one is needed to be created. A new

dataset with a real application was generated for Facebook web app. Where

Facebook was built using React, as one of the highly used front end

technologies [57]. Additional datasets were created randomly with the main

required fields for the experiments to validate the database size impact.

6

Chapter 2. Background
__

In this chapter, a background about the research topic has been presented. First

section illustrates the effectiveness of the test case and the relation with prioritization.

Section 2.2, presents component based architecture frameworks that this research test

cases prioritization problem has been built on. While the next section illustrates the

definition of multi objective optimization, problems and solutions. This includes the

required algorithms that have been used for this research solution. The last section

presents the optimization in software testing.

2.1 Test cases effectiveness and prioritization
Effectiveness of test cases could be measured by considering the number of

bugs or defects that were discovered by executing the test case [14]. Once the number

increases, the effectiveness of the test case increases. This could be considered as an

indication that helps in discovering more failures and bugs, as an important result it

helps in resolving them by executing the same test case or scenario. To improve test

case effectiveness different tips were suggested from research. One important tip is

understanding and making a kind of documentation for test cases. This action helps in

adding more focus on analysis and reviewing and it helps to discover failures before

execution starts [15]. Another important tip is thinking about the factors that may

affect the test cases and different sources of errors and defects.

Different metrics are connected with test cases effectiveness and helps in

detecting new bugs and defects, these metrics are called coverage metrics. The

coverage gives the team an indication about their quality by the number of items that

were covered in their testing. Definitely this helps in discovering some gaps or new

areas that were not covered and that should be tested by the team. As a result, new

bugs will be discovered and then early fixes will be done. This reduces the cost of

bugs fixes instead of discovering them on production later, more trust and confidence

about the quality could be achieved [18].

7

The focus of most research papers was done by coverage metrics that are

directly connected with code, this is called structured or code coverage [18]. For

example, statement coverage is used to verify that all statements in the code were

covered in the testing phase. Other examples are conditions, branches and loops

coverage [19]. All the mentioned types as noticed need to have the source code of the

software and to follow that code. Another kind of test coverage which doesn’t need

the source code is requirements coverage [17], it is the best fit to work with black box

testing [16]. In this case there is no need to know anything about internal code that

should be built by the development team [7]. Another common name for black box

testing is functional testing, where the tester needs to make sure that the software

functions as expected [8]. Black box testing has main advantages, it’s important for

test cases design and execution because there is no need for code at all. In addition,

it’s easy to learn since there is no need for learning the programming language. On the

other hand, it has clear limitations with code and path coverage.

Usually the testing team put an effort to order test cases depending on some

criteria, this is called test cases prioritization. The target of prioritization is to increase

the percent of error detection and failures in early stages. In addition, it’s important

for discovering the most important bugs and risks early [20]. This action definitely

increases the effectiveness of testing in general. Start testing with test cases that have

high coverage and error detection early, then missed areas, gaps and different kinds of

errors will be detected early [21]. As a result of early discovery, this gives a better

chance for debugging and fixing bugs and finding solutions, for sure, fixing cost will

be reduced. Different techniques are available and were studied by researchers for test

cases prioritization. Most of these techniques are applicable for regression testing

since it consumes a lot of time and in a repeated way [22]. On the other hand, some

studies focused on prioritization solutions for white box testing. In white box testing

as mentioned before, the code must be available for testers and technical knowledge is

needed. Less studies focused on manual testing and black box prioritization. More

about all of these available solutions is discussed in the related work. Regardless of

the testing type or even the coverage, in some cases the decision makers decide to

release the software with some available known bugs or available areas without deep

testing [65].

8

2.2 Component Based Architecture Front End web
applications

Web application is generally considered as a client-server application that uses

the browser as a client [46]. Clients send requests to the server, requests will be

processed by the server. Later, response will be returned to client or browser as

representative of client in web applications. Client-Server architecture style itself

could be considered as two layers [47]. The Web application server might

communicate with other servers or layers to do specific processing. As a result, the

web application could be considered as a multi tiers architecture. It applies three tiers

architecture design pattern. The first tier is the presentation layer, it is used to display

the user interface and it’s represented by the web browser. The second layer is the

business layer, it is represented in web application by the web server and it’s used to

process browser requests from business logic perspective. The third one is the

database layer. For more separation between business logic and user interface,

model-view-controller architecture design pattern could be applied as represented in

Figure 2.1 [46]. View is used for display user interface on browsers by encapsulation

of display choices. While the model is used for business information encapsulation.

Third part, which is the controller, is used for communication and to maintain the

consistency between model and view.

 Figure 2.1 Model View Controller (MVC) Architecture

9

Development of the client side for the web application is known as frontend,

while development of server side or business logic is known as backend. Different

programming languages, frameworks and technologies are used for frontend and

backend development. In modern web applications, the most web technology that is

used for frontend development is Javascript [48][49]. Javascript is an interpreted

language that provides object oriented capabilities [50]. It has different advantages

such as performance, objects support, easy to learn and code reuse for both frontend

and backend sides [51]. For different purposes for software developers such as

performance and reusability, different frameworks and libraries were developed in

recent years on top of Javascript. However, all these frameworks are working to

support web applications development with model view controller (MVC)

architecture.

Recently, for new large scale applications, there are different main and

important challenges. A complex user interface that has a dataset which highly

changes over time is one of them. In addition, high maintainability needs is a big

challenge for owners and developers [57]. Justin Meyer who is the creator of

JavaScriptMVC has a key solution for the mentioned challenges, it’s represented by

this quote “The secret to building large apps is never build large apps. Break your

applications into small pieces. Then, assemble those testable, bite-sized pieces into

your big application”. The component based architecture is the best solution that

represents that quote, therefore new solutions have to resolve problems separately. By

component based architecture, the user interface is constructed by building different

components. Components represent different business needs, each set of components

are used together to perform full business flow. Raymond summarized the main

concept about using the component based architecture in his book “The Art of Unix

Programming” as the following: “The only way to write complex software that won’t

fall on its face is to hold its global complexity down, to build it out of simple parts

connected by well-defined interfaces, therefore most problems are local and you can

have some hope of upgrading a part without breaking the whole.”[57].

Angular2.0 and React are examples of the proposed frameworks as solutions

that are highly used nowadays by developers. They are used for building complex

10

interfaces, scalable and maintainable web applications using MVC architecture. React

is a JavaScript framework as described in some research, or it’s a library as described

in another research[59]. However, either it’s a framework or a library, it was proposed

by Facebook developers in 2013 [57] in order to resolve the mentioned problems. The

needs specifically were raised when Facebook developers had a problem with

managing the Ads that usually changes over the time. They also had a different need

of keeping the syncing for user interface with business needs and application state

[59]. One of the most proposed benefits of react and other component based

technologies is reusability. So, building a new component may lead to breaking it into

other smaller components and this will let you reuse all the micro components later.

To illustrate this, an example from Facebook web app, comment is a totally separated

component from comments list [59]. This means, when we see the whole comment UI

we may think it’s one component, but as described by Facebook developers [59],

separated small components will give you the ability to reuse them everywhere in the

system. In addition to reusability of small components, you also can reuse the large

component itself which consists of smaller components. The result for you, is the

ability to reuse everything. Figure 2.2 represents the components reusability in

components based architecture, where a large component composes small or micro

components and the same micro component is used in different components .

 Figure 2.2 Components reusability in component based frontend frameworks

11

2.3 Multi Objective Optimization Problem and
Solutions

Multi objective optimization problem refers to the case where different

competing objectives are needed by decision makers. The process of finding

solutions for those kinds of problems is called optimization [58]. By that solution, it is

expected to find the optimal value for each objective with respecting all other

objectives. The result will be a kind of tradeoff between all the competing or

conflicting objectives. With single optimization the solution is evaluated by

comparing the values of different functions, while in multi objective optimization,

dominance is used [59]. When we have two solutions such as x1 and x2, x1 dominates

x2 when [57]:

- X1 is not worse than x2 for all objectives.

- X1 is better than x2 at least for one objective.

When the above two conditions are applied, we can say x2 is dominated by x1.

Figure 2.3 represents two competing functions or objectives , f1 is maximizing while

f2 is minimizing [60]. There are several possible solutions where some of them are

dominated by others. For example, solution 1 is better than solution 2 regarding f2

because it has a value which is less than solution 2. Also solution 1 has maximum

value than solution 2 if we compared them regarding f1. The result from the previous

example is considering that solution 2 is dominated by solution1. Same is applied to

solution 5 and solution 1, even solution 5 and solution 1 are the same regarding f2, but

solution 5 is better than 1 regarding f1. As a result, solution 5 dominates solution 1.

Another important example from the diagram is comparison between solutions 1 and

4. Solution 1 is better regarding f2, while solution 4 is better regarding f1. Result: no

one dominates the other.

12

 Figure 2.3 Dominance Example

The set of non dominated points of feasible decision space is called pareto

optimal, while pareto front is the boundary. On the other hand, the set of non

dominated solutions is called the solution set [60]. In Figure 2.4, we can see the non

dominant points: 3, 5, 6 where their points are not dominated by any other points. The

boundary is the pareto front [60].

 Figure 2.4 Pareto Front Example

13

Finding a diverse set of solutions that are close enough to the pareto optimal

front, is the main target of multi objective optimization. To implement these solutions,

evolutionary multi objective optimization (EMO) algorithms are used. After finding

the pareto optimal, depending on a higher level of information a decision has to be

taken about the required solution from the generated set of pareto optimal [60], Figure

2.5 represents the general procedure.

 Figure 2.5 General Procedure for finding solution in multi objective optimization

2.3.1 Evolutionary Algorithms for Multi Objective Optimization

Evolutionary algorithms idea is based on natural evolution [61]. Two

concepts are used from nature in these algorithms, the first one is selection and

the second is variation [61]. Selection refers to the idea of competition

between living beings on the available resources. This means some of these

resources have a better chance to survive. The second concept refers to the

ability of generating new living beings by principles of mutation and

recombination. The importance of these algorithms in multiobjective

optimization problems is finding more than one pareto optimal solution by a

14

single run. The whole idea of finding the solutions by EA has to be done by

maintaining a set of solution candidates that were selected. After that, they

have to be manipulated by recombination and mutation. Several

methodologies were proposed under these algorithms, one of the most popular

algorithms is the genetic algorithm. Under the genetic algorithm there is a

variant group of algorithms [61].

2.3.2 Genetic Algorithm (GA)
Genetic algorithms were invented in the 1960s by John Holland in

order to study how we can apply nature evolution and adaptation into

computer science. After that genetic algorithms have been considered as most

robust evolutionary algorithms. It was mainly inspired by the way species are

being evolved by natural selection based on fittest individuals. The generated

solution set by the genetic algorithm is called population, while each solution

in the generated population is called chromosome or individual. A Single

chromosome in nature contains several genes, the same concept is applied in

genetic algorithms. Therefore each chromosome that represents a solution in

the generated population contains discrete genes [5]. Mapping solutions with

chromosomes requires an encoding process, the original genetic algorithm

encoded genes using binary values [59]. Several encoding methods were used

later like string, numeric and non-numeric values. During natural evolution,

reproduction requires crossover between parents' chromosomes, therefore

genes will be able to exchange. This process in nature may lead to a mutation

in the generated offspring [3]. The same concepts are applied in genetic

algorithms as being shown in Figure 2.6 which represents the basic

pseudocode.

15

 Figure 2.6 Basic pseudocode for the genetic algorithms

From the above Figure 2.6 the following steps illustrates the genetic

algorithm flow [4][3]:

- Initialize (population) : an initial population has to be created as a start

point of the genetic algorithm, this population could be created

randomly or manually.

- Evaluate (population) on this step, each chromosome that represents a

single solution in the population has to be evaluated. The idea of

evaluation is to calculate a fitness value for each individual therefore it

could be used later for selection.

- Selection (population): after evaluating each individual, the selection

operator has to choose a group of chromosomes from the evaluated set

of individuals. The target is to specify good chromosomes that have

better genes and to move them later to the next generation. Several

methods are available for selection like elitist selection, it selects the

chromosomes with highest fitnesses values..

- Crossover (population): in this step two individuals from the selected

set in the previous step have to be selected to make a new change. This

change has to target some genes on both individuals and to mix some

of the first individual with the second one. New chromosomes with

new genes will be generated from this step. The original two

individuals are called parents. Several methods are available for doing

16

1. Initialize (Population)

2. Evaluate (Population)

3. While (StoppingConditionNotSatisfied){

4. Selection(EvaluatedPopulation)

5. Crossover(SelectedIndividuals)

6. Mutate(OffSpring)

7. }

crossover, one type for example is swapping. By swapping, genes from

first parents are replaced with another gene from the second parent.

Determining the likelihood of applying the crossover to the selected

chromosome, a crossover probability has to be defined. The crossover

probability is connected with the fitness value in order to increase the

probability of moving the good properties to the next generation after

crossover.

- Mutation (population): it’s a required change that has to be done for

some genes on the generated offspring population. Choosing an

individual form offspring population for mutation is based on a

mutation probability. The objective form this process is to increase the

diversity in the generated solution set. Even though this change has to

generate a solution that has to solve the problem. If not, then the

generated solution is not going to be considered in the solution set.

2.3.3 Nondominated Sorting Genetic Algorithm (NSGA and

NSGA-II)

The NSGA algorithm was proposed by N. Srinivas and Kalyanmoy

Deb [58][61]. The main idea about this algorithm is classifying all

nondominated individuals into one category before selection. This algorithm

was one of the first evolutionary algorithms, even though it has three main

criticisms over the years:

1. The non dominated sort is expensive then the time cost is O(MN³)

[61].

2. Lack of elitism [61], elitism refers to the important idea of keeping the

good solutions alive for the next generations. In the context of

multiobjective optimization, all non dominated solutions are

considered as elitists [59]. Elitism could be done by keeping the elitists

solutions in the populations or by sorting them in a secondary list, then

reintroducing them again to the populations. This elitism process is not

simple on multi objective optimization problems because of the large

17

number of non dominated solutions. On the other hand, supporting it

within the algorithm can improve the algorithm performance and it will

prevent the good solutions from being lost within different populations

[61].

3. The sharing parameter is needed [61], to distribute the solutions over

the pareto front, a diverse population is needed [59]. To do this,

different methods were used based on generating a sharing parameter.

However it may need additional cost to specify it and it may not

generate the required diversity, so it’s not desirable [59].

The same authors of NSGA developed another algorithm on top of

NSGA, it’s called NSGA-II. The above mentioned problems were resolved on

the second version. By NSGA-II, each solution on the population compared

with a partial population as the following:

- Keeping the first solution from original population on a new partial

population Pَ

- Then each other solution p on P, must be compared with the partial

population Pَ

- If there any solution q on the partial population is dominated by

solution p, then remove the dominated solution q from the partial

population.

- On the other hand, If the solution p is dominated by any other solution

in the partial population, then ignore p.

- While if the solution p is not dominated by other solutions on the

partial population, then add it to the partial population.

From the above description, we can see that for a second solution from

the original population, one comparison is needed. Moreover, For the third

solution, maximum two comparisons are needed. This means the cost for

maximum checks is O(N²). After adding the number of functions M that are

needed to be compared, the complexity is O(MN²).

18

2.3.4 Strength pareto evolutionary algorithm (SPEA2)

The SPEA2 algorithm was built on the basis of SPEA [68] in order to

resolve some issues that were found in SPEA that could be used to find

parallel multiple pareto solutions [68]. SPEA basically uses initial population

and external one which is considered as archive, the archive initially is empty

and it has to be updated per iteration. The non dominated members have to be

stored in the external set, then this external set will be used to calculate the

fitness for individuals. Briefly The basic SPEA algorithm will work as the

following [67][68]:

- Create the initial population and initial empty external set

which is considered as an archive.

- Store the non dominated set in the archive.

- Remove any duplicated solution in the archive.

- When archive size exceeds the limit, use clustering for pruning

it.

- Calculate the fitness for both the current population and the

archive.

- Select individuals from both sets by multiset union until they

fill the mating pool.

- Apply the crossover and mutation, then stop if you reach the

maximum number of generations. Otherwise return to step two.

Several weaknesses were specified for the SPEA algorithm, first about

is related to fitness assignment where in some cases the SPEA works exactly

like a random search algorithm. That happens when there is only a single

member in the archive, while individuals have the same fitness value

regardless if they dominate each other or not. The second issue is related to

density estimation, where different individuals in the current generations don’t

dominate others. Therefore density is needed to collect information [68]. In

this case clustering works only with the archive and doesn’t work with the

current generations. Therefore, search will not be effective. Third issue is

19

about archive truncation, where the clustering technique used in this algorithm

may cause to lose some outer solutions.

SPEA2 resolved the fitness problem by assigning a strength value to

each individual in both current population or the archive, that has to be done

for dominating and dominated solutions in order to measure the number of

solutions that each one dominates. In SPEA2 the second and third problems

were resolved by the new update method [68], it operation prevents removing

boundary solutions, also it keeps the archive content size as constant.

2.3.5 Multi Objective Cellular Genetic algorithm (MOCell)

MOCell is based on another algorithm which is called cGA, the main

difference between them is using the pareto front in MOCell for multi

objectives. Density estimator is used for keeping the diversity during inserting

solutions into pareto front, where pareto front is used as external or archive

population. In addition, Density estimator is also used to remove solutions

from the external when it’s size is full [69].

The algorithm is represented in Figure 2.7 , it starts by creating an

empty external population which is represented by pareto front [69]. The

genetic operators have to be applied successively to the individuals, while

individuals have to be inserted first and arranged in a two dimensional

toroidal. Two parents from each individual neighbor have to be selected. After

that, in order to get the offspring, recombining has to be done, then mutating

it. For the resulting individual, evaluation has to be done. After that, inserting

it in both populations: auxiliary and the pareto front . Per each iteration,

replace the old generation with the new one which is the auxiliary. Finally, a

feedback procedure will replace a random fixed number of individuals in the

populations from the external population which is the pareto front [69].

20

 Figure 2.7 Pseudo Code for MOCell algorithm

2.3.6 Indicator- Based Evolutionary Algorithm (IBEA)

The basic idea of this algorithm is to define a binary indicator that

represents an optimization goal. IBEA algorithm based on doing tournaments

for mating selection and environmental selection. It has to remove the worst

individual iteratively. After that, it has to update the remaining individual

fitness values in the populations. Regarding to algorithm performance, if the

population size is then the execution time of the algorithm is .α (α)O 2

2.3.7 Solutions Evaluations by Hyper Volume

Several quality metrics are available to evaluate the generated

solutions from genetic algorithms, these metrics are being used to validate the

goddess of Pareto solutions set in the objective space. HyperVolume (HV) is

21

1. proc Steps Up(mocell) //Algorithm parameters in ‘mocell’

2. Pareto front = Create Front() //Creates an empty Pareto front

3. while !TerminationCondition() do

4. for individual ← 1 to mocell.popSize do

5. n list←Get Neighborhood(mocell,position(individual));

6. parents←Selection(n list);

7. offspring←Recombination(mocell.Pc,parents);

8. offspring←Mutation(mocell.Pm,offspring);

9. Evaluate Fitness(offspring);

10. Insert(position(individual),offspring,mocell,aux pop);

11. Insert Pareto Front(individual);

12. end for

13. mocell.pop←aux pop;

14. mocell.pop←Feedback(mocell,ParetoFront);

15. end while

16. end proc Steps Up;

one of the most used indicators for solutions evaluations. It’s a quantitative

value that represents the difference between the size of objective space that is

dominated by the observed pareto solution set and the space that is dominated

by a true Pareto solution set [12]. The true Pareto solution set dominates the

entire solution space, therefore the observed solution set is evaluated by

measuring how much it’s worse by comparing it with the true Pareto solution

set. In this thesis, hypervolume will be used for solutions evaluations in all

experiments that will be proposed later.

2.4 Optimization for Testing

Structural Testing is one of the most testing types that was used in research of

SBSE [55]. The idea here is to measure the quality of a program by measuring the

coverage depending on the structure of the program. For example, measuring the

branch coverage is a method where we could measure the quality depending on the

structure of the code. This will definitely give us an indication about the coverage in

general. The search based on structural testing was first applied on C programming

language programs. After that it was applied on object oriented [53]. A second type of

testing that was used in search optimization is a model based testing. Depending on

the selected model such as finite state machine, data flow, control flow and others, we

need to generate different unique sequences of data input output values. Search based

algorithms also were applied on research for mutation testing, in this testing, test

engineers seed several faults on the code. After that, they generate inputs and execute

test cases with these inputs on the mutated version of the code. That has to be done in

order to check if these inputs will be able to detect the fault. If the previous step

succeeded, the mutant will be considered as killed by that input. This will give an

indication where that input will successfully detect the faults on the real code that is

not mutated with bugs. The search based on the previous testing was used to specify

the best set of inputs that will kill the seeded mutant [53]. Exception testing also was

used in SBSE in order to find the best inputs that could be used to produce exceptions

[53]. Exception testing is a testing type that is used to test handled exceptions in the

system. Another important research was done on regression, the number of cases

22

might be large and might increase the time. Sometimes if the wrong decision was

taken to neglect some cases, this might be resulted in reducing the coverage. This

important problem could be resolved by SBSE[53].

Testing phase sometimes includes nonfunctional requirements, one of these

requirements is execution time. SBSE was used also with temporal testing, it refers to

the type of testing in which the shortest or longest execution time is measured in order

to maximize or minimize it. SBSE is applied here in order to find the cases where

there is an objective to reduce or increase the execution time [53][55]. Another type

of testing for nonfunctional requirements is stress testing. It’s used to find the points

in which the system will be broken because of degraded performance. This problem

was also used to apply SBSE in order to find the test cases in which the performance

might be degraded [53]. Different algorithms were used for resolving the mentioned

optimization problems, NSGA-II is the most used one as a genetic algorithm [56].

23

Chapter 3. Related Work
__

Most work about test cases prioritization solutions in research was done for

regression testing. This is related to the fact that was mentioned in the background

about regression testing time. The time is connected with the number of test cases

from previous releases.More features means more regression test cases, then more

regression testing time. To see the gap for this research test cases prioritization

problem in previous work, different solutions in previous work are listed and

discussed here in this chapter. All these solutions are classified under regression

testing or under new test cases that are going to be tested for the first time.

3.1 Prioritization Solutions for regression test cases
All regression prioritization solutions in previous research have different

objectives to do prioritization. These solutions are also classified under main general

solutions as the following:

3.1.1 Structural Coverage Based Solutions

These prioritization solutions under this category are connected with

structural code coverage that was discussed in the background. The main

objective for those solutions is enhancing the error and defects detection in

early stages by code coverage [23][24].

Different studies were proposed under structural coverage, in this

section different examples will be discussed. First example, an important

research study, used branch coverage and statement coverage to do

prioritization. The researchers resulted in increasing and enhancing the fault

detection [28]. Similar prioritization solutions were proposed by other

researchers in a different study, in this case two structural solutions were used

in order to prioritize the test cases [25]. First is statement coverage, it

prioritizes test cases depending on the number of code statements that could be

24

covered by each test case. The second one is function coverage, in this case

prioritization for test cases was done depending on the number of code

functions that could be covered from each test case. The study did an

experiment that checked the impact of using different versions of the software.

Versions were important in order to see the impact of new prioritization by

collecting new data for each version. The study resulted in a better coverage

when doing a new prioritization for each version. In addition, an important

result from the previous study was done by having a comparison between

function and statements coverage. The result approved that the statement is

more costly than function. On the other hand, statement coverage is better for

early detection of bugs. This means in case there is a critical impact for late

discovery of bugs, statement is recommended to be used [25]. The two

previous mentioned papers [28][25] have similar methodology, they both need

source code in order to measure the coverage whatever it’s. Also, it’s not

recommended to start using these solutions before finishing the system

development phase. The reason behind this is the final numbers of statements

and functions are not known in the beginning of the development phase.

Moreover, technical skills and knowledge are required in order to return and

understand the code during measuring the coverage.

Other structural solutions were proposed in another study that worked

depending on the interaction or events coverage [26]. This study resulted in

five prioritization techniques that prioritize test cases depending on how much

each test case will cover events. First solution prioritizes test cases depending

on how much test cases will cover unique events as early as possible. The

second one prioritizes test cases depending on the interactions with events. It

measures how the interaction with events can cover different parameters for

the event. The third one prioritizes test cases depending on it’s length during

interacting with the event from shortest to longest. Fourth is similar to the

third one, but test cases are prioritized from longest to shortest. Final one is

random prioritization. All of these techniques are useful when there is an

interaction coverage from test cases, otherwise fault detection will be low.

These interaction prioritization techniques could be applied on regression

25

testing or functional testing which is kind of system testing. On the other hand,

they need source code, technical knowledge and they will not be able to be

applied before finishing the system development phase. The same reason

behind finishing development code is mentioned for previous studies. There is

no guarantee how the events will be before freezing the coding by the

development team.

More structural solutions were proposed in another research by

considering the new source code changes coverage and the related source

code [27]. The study objective is to decrease the cost of regression testing by

minimizing the number of regression test cases. As the previous structural

studies, source code access is needed here in addition to technical knowledge.

From all mentioned studies, structural testing coverage solutions need

source code and technical skills. The different results between these solutions

is fault detection percentage and the system nature that needs specific

techniques in some cases. Moreover, there is a need to have the final

implementation for the system or the feature under testing. This will give the

correct and accurate number of code coverage. As a result, applying these

solutions is suitable for regression testing. Since the regression is usually done

after finishing the new code changes. In regression testing you will have the

opportunity to measure an accurate number for the code coverage regardless

what the coverage solution is, this will give better prioritization.

3.1.2 Fault Detection Based Solutions

The proposed solutions under this category are working by making a

classification for test cases depending on the probability of failures per test

case. This probability is measured by returning to code statements and

checking if the statement caused failure, will it lead to test case failure or not.

In case it will cause test case failure, this will increase the fault probability

value for the test case. A research study that was discussed under structural

categories also proposed a solution under fault detection [28]. In addition to

branch and statement coverages, the same research presented other solutions.

These solutions added the probability of test case failure by measuring how

26

the statement or branch may lead the test case to fail. The research resulted in

proving that fault detection will be improved using these solutions.Even

though, they are considered as too expensive because you have to check each

statement and its impact on all test cases.

Another fault prioritization solutions were proposed on a paper that

also presented structural solutions [25]. This research added fault probability

by statements and functions in parallel with code coverage. Different versions

for software also were used, this is exactly as supported in the same paper for

structural coverage. The solution for measuring the faults probability depends

on the fact that some functions are a source of errors more than other

functions. These functions should be given an index when they are expected to

cause errors. This could be done by comparing the current version to previous

versions, checking the new changes and then expecting the errors. If that

function has to be executed during the test cases execution, then this will lead

to increasing the test case priority. Similar work was done in another research

paper [29] which was presented by the same authors of previous research for

test cases prioritization [28]. They invested in the versions concept by a

controlled experiment in order to study the fault detection. The research had a

similar result to the previous one, fault detection will be improved by using

different versions of software with prioritization solutions. Another important

result from the same study is about the cost of failure probability based

solution. While the statement fault detection is too expensive, function or

branch is less expensive. On the other hand, the statement will work better for

early detection of errors with higher rate coverage.

As we can see from the previous examples, failure detection based

prioritization solutions are actually structural solutions. Instead of code

coverage only they added the fault probability. As a result, the fault based

solutions need access to source code. Also, some kind of technical knowledge

and skills are needed in order to understand the code. Moreover, code has to

be finished by the development team in order to measure the final faults

probability from code that has an impact on test cases. From this result, these

27

solutions are easily used with regression testing where development phase and

functional testing work for the new feature are done.

3.1.3 History Based Solutions

Test cases prioritization is done here depending on the previous test

execution results. Therefore the previous results are considered as a history

which could be used to prioritize the current release regression test cases. The

objective of those solutions is to help in increasing the testing effectiveness

and reducing the regression cost by using the history results as data source

[23][30].

Different previous prioritization solutions are able to be used with

history based solutions. For example, code coverage history could be applied

here separately or with fault history. A proposed solution prioritizes test cases

depending on fault history of test cases from previous releases, it also used

function coverage history [30]. This solution calculates the number of faults

per test case from previous executions. After that, for the same test case, the

number of functions that were covered from previous executions will be

measured. Therefore, the priority of that test case will be calculated depending

on faults detection and functions coverage from previous releases [30].

Another solution was proposed in another research by calculating a

historical value of the test case [31]. The prioritization will be done later by

the calculated historical value only. It also could be done by merging it with

another regression test cases prioritization solution such as structural coverage

solutions. The historical value itself was calculated in the mentioned research

by basically returning to the historical cost of the test case. After finding the

cost, the solution has to find historical data about faults severities that were

detected by executing the test cases in previous releases [31]. The cost was

considered as execution time for that test case. While the severity was

considered as to how much the detected fault has critical impact on the system.

These historical values could be applied in different ways. Considering the

cost as monetary, human resources time or machine time are examples.

Moreover, instead of considering the fault severity in historical value, code

28

coverage such as statement or function could be considered [31]. The decision

behind this has to be done depending on what is available to the testing team.

Another prioritization solution was reviewed in related work and it is

categorized under historical based solutions. It depends on performance as a

historical data [32]. Performance in this study is related to the ratio of how

much the test case detected total number of defects in total number of previous

releases. This is connected with the fact about the nature of test cases that

might not be executed in all previous regression tests. On the other hand,

some test cases might detect a higher number of defects. Even though they

were executed in less number of releases. The mentioned proposed solution

takes into consideration another two measures in addition to performance.

First one is the priority of test cases in previous releases. While the second one

is the duration that the test case wasn’t executed [32].

Other similar studies were proposed based on historical data with

changes on research methodology, environments, goals and new contributions.

For example a research was done for prioritizing regression test cases in

software companies that follow continuous integration in their process. This

research used historical faults per test case for deciding its priority. Since the

continuous integration nature automatically tracks the faults per execution, it’s

easy to collect historical faults [33]. Another study proposed a solution for test

cases prioritization depending on the cost [34], fault detection and severity of

the fault. The proposed work here is similar to previous work in previous

mentioned research which used the performance cost [31]. The difference for

this research is using the genetic algorithms for implementation. However, In

related work, there are a lot of studies that were proposed based on genetic

algorithms for test cases prioritization using historical data.

As we can see, all the mentioned studies are talking about regression

testing. This means that they are not able to be applied for any level of testing

when the test target is a new feature or a new change. The reason behind this

is the need of historical data that is the basic part for building prioritization.

As a result, since there is no history for test cases of the new change or for the

new feature then no historical data. All history based prioritization solutions

29

are not applicable here. In other words, in order to apply them at least two

releases of the same test cases are required.

3.1.4 Requirements Based Solution

One important reason behind faults that might be discovered in the

testing phase is requirements [35]. Missed requirements or misunderstanding

will have a critical impact on customer satisfaction. During system testing

there is a need to test each single scenario that was requested in requirements

by the customer. In system testing, requirements documents are the reference

point for testers. Therefore functional testing could be done without any need

to return to the source code itself. Different test cases prioritization solutions

were proposed for prioritization of test cases for system testing by only

depending on requirements. This might be applied for a new feature which

needs new test cases that will be executed for the first time. Also it might be

applied for regression test cases that are needed to be re-tested per new

release. This is needed and important when the testing team doesn’t have

automation testing. It is also important when there is no technical knowledge,

then testing team work by black box testing for each new release.

First solution is able to be applied for new test cases that are related to

a new feature or new change. In other words they are going to be executed for

the first time [36]. Also the solution is applicable for prioritizing the

regression testing depending on requirements only [36]. The proposed solution

used different factors that were extracted from requirements to generate the

prioritization. First factor is the customer's priority. The customer who needs

to use the expected system and who is the main source for requirements has to

assign priorities to the requirements list. Second factor is the requirements

volatility. This refers to how much requirements are stable or continuing

change during the development cycle. A lot of work might need to be re-done

again after changing requirements. Sometimes the change is needed for design

as an example. On the other hand, there is a need for several changes on the

code by adding, removing or refactoring. Therefore this factor is a major

cause for errors and it’s important to be considered in the mentioned solution

30

that depends on requirements [36]. The third factor is implementation

complexity. The developers who were assigned to develop the system have to

give their expectations about the code complexity. This complexity has to be

evaluated before starting development. This means it will depend on

requirements that have to be implemented by the code. The last factor is fault

proneness, this is about how the number of faults that are expected to be

discovered by a specific requirement. In order to expect the faults, history is

needed to be tracked here. Therefore, this factor is only considered when the

prioritization is needed to be done for regression testing only. By contrast, in

case of having new test cases that are going to be executed for the first time,

there is no history from previous releases then this factor is not considered

[36]. The solution approved that customer satisfaction will be improved by

using this prioritization technique. This will help in early discovery of faults

which will directly have an impact on customer satisfaction [36].

Other authors proposed similar two solutions under requirements based

prioritization in two different research studies in 2008 and 2009 [38][39]. First

study has the same four factors from the previous mentioned study [36]. Both

proposed solutions [38][39] are able to be applied for prioritization of new test

cases that are connected with new requirements. Also they are used for

prioritization of regression testing. This is a similar point with the previous

discussed research [36]. First new study [38] added two new factors that are

different from [36], so prioritization is able to be done by six factors. Those

factors are: customer priority for requirements, developer code complexity

expectation, rate of requirements changes, fault severity, usability and the last

one is application flow [38]. For new test cases, the first three factors are only

used. On the other hand, the last three factors are only used when the target of

prioritization is regression testing [38].

About the first new factor which is usability, this factor is used in order

to measure how the system implementation was easy to be used by customers

after releasing the feature. This factor is important for system quality

evaluation from the customer perspective. Therefore each requirement should

be rated from the usability perspective. Once the feedback is ready from the

31

customer about the released feature, it has to be considered for the

prioritization of regression test cases in the coming release [38]. Since the

feedback is only ready after the first release of the system or feature, it’s a

normal reason to use this factor only with regression testing. On the other

hand, for new test cases the system or feature is not implemented yet and then

the system is not released. Hence, there is no available feedback. The second

new factor is application flow. It is important for measuring how the

functionality that represents requirements was going from one release to

another. So, another rate will be given for each requirement depending on its

implementation behavior between different releases [38]. That means it’s also

a normal reason to consider this factor only for regression test cases

prioritization. Since we need to see the functionality behavior from release to

another, then we can’t use it with new test cases. These new test cases or new

requirements were not available in previous releases. Therefore, there are no

previous releases to compare and evaluate the requirements depending on the

behaviour which is not available in this case.

In the second new mentioned research, a similar solution was proposed

in 2009, it’s very close to the previous one and it’s for the same authors [39].

Also they used the same mentioned factors that were used in the first

discussed research under requirements based solutions [36]. In addition to the

four factors it added another two factors. They are only valid and applied on

regression testing, while the same first three factors are valid and applied for

new test cases. The new added factors for regression testing are completeness

and requirements traceability. About completeness, it refers to measuring how

much the requirements that are going to be re-tested or reused for regression

are complete from a customer perspective. Hence, when regression is needed

to be done, each requirement has to be verified if it satisfies all customer needs

under each specific condition with expected performance. After that, a

requirement will be given a value or rate from customers depending on it’s

completeness measurement. Then it will be used for test cases prioritization

[39]. About the traceability which is the second added factor , it refers to

measuring how much the selected requirement life cycle was tracked and

32

traced from it’s first cycle or first release until last feedback from customer

after releases. The reason behind this from the authors’ perspective is

increasing the quality by tracking the requirements in different releases [39].

Although this study is similar to one of the previous studies [36], it was not

compared with it by authors. Even though their final result approved that the

fault detection could be better by their new proposed solution [39].

Another prioritization solution was listed under requirements based

solution was proposed with specific kinds of applications, these applications

are web services [37]. Test cases prioritization is done here by depending on

how much the test case will satisfy or cover the constraint of request quota.

This quota is supported by the web services structure, the APIs calls and

requests. It should be specified as non functional requirements in the

requirements phase. The generated solution was applied in the research on

regression testing. We can notice that from the application nature, the code

should be ready in order to know the final version of quotas and web service.

Moreover, it’s similar to structural based solutions and failure based solutions

that connect test cases with code statements. The difference here is connecting

the test cases with quota or APIs requests. As a result, this kind of

prioritization is not able to be applied without some kind of knowledge about

source code and without stable code that will not change again. That means,

it’s more suitable to work well with regression testing.

3.1.5 Hybrid Approaches

Different solutions were proposed by combining different solutions

from above categories in order to enhance the fault detection. For example, a

prioritization solution was proposed depending on the fault detection and

historical data for previous execution time [40]. The proposed solution was

built using genetic algorithms in order to enhance fault detection for

regression test cases. In that solution time is considered as a constraint for

releases [40]. Therefore this solution is only applicable for regression testing

since we need history data. Another example for these solutions was combined

between requirements based and historical based solutions [41]. It applied the

33

genetic algorithm by considering how much the test case covered

requirements. It also takes into consideration the historical data about the

execution time of test cases. Because the mentioned solution needs historical

data, then it’s exactly like other history based solutions. It’s only able to be

applied for prioritization of regression test cases, then it will not work with

new test cases. A greedy algorithm was also used to propose another solution

that combined between code coverage and test cost. The Cost is considered as

historical data about the test cases [42]. This solution is similar to the same

previous structural and historical solutions. Therefore it will not be used with

new test cases and it’s only applicable with regression test cases.

A lot of solutions were proposed by mixing the above approaches

.Some times as discussed previously by combining code coverage, fault based,

history or requirements. As code, fault detection and history are concepts that

are connected with stable code that will not change or with different releases. ,

then generally these methods are valid for regression testing. At least, there is

a need for having and understanding the stable code and then measuring some

values, or there is a need to collect data from execution history. Ofcourse, that

is not suitable for new test cases prioritization since no available executions to

be used as history. In addition, the source code is not stable for new features

and different changes have the chance to be added to the code. That means, all

coverage measures are not accurate and then it’s not possible to use them in

prioritization.

Other studies that are not connected with previous solutions and are

not listed under the previous categories were also proposed. As an example,

one study proposed a solution which depends on data flow in the program and

specifically all program variables [43].This definitely needs a final stable

version of program code. The concept for this study is similar to previous

mentioned structural code based solutions. That means it could be applied only

for regression regression test cases for the same reasons. Another solution was

proposed specifically for COTS components regression testing [44].

COTS are third party components that are integrated and reused in

different systems. In some cases these components have new changes and

34

different versions might be released. As a result, new changes for software

systems that use them will happen. This means some faults may occur for

different systems depending on their contexts. That needs a new regression

testing to the system that is integrated with this component. The authors

proposed a solution for regression test cases prioritization depending on

measuring how much the test cases interact with the component [44]. The

proposed solution needs to check classes or solutions in the source code that

represents the test cases. It’s actually a representation for the real interaction

with the component. This solution is only applied for test cases that interact

with components on a specific target. The case applied only when there is a

new change on the component itself, while the system code has no change.

Since the code is stable and has no change this is exactly the regression test

cases. In addition, the normal system will have different test cases that may

interact or may not interact with COTS. This approach is not able to be

applied for testing that includes all test cases that might not interact with

COTS components. So this approach is able to be used for prioritizing test

cases that are connected with the COTS that have new change only. This also

means that some kind of technical knowledge about source code is needed in

order to check which test cases are interacting with COTS. In this case COTS

components are not visible for the tester. Therefore the tester will not be able

to know if the test case will interact with that component or not ,either for the

new test case or regression.

Another proposed prioritization solution could be listed under more

than one category was proposed for web applications regression testing [45]. It

prioritizes test cases by depending on the number of requests that were

covered by the test case from previous executions. Also test cases could be

prioritized depending on the number of pages that were covered by the test

cases in previous executions. In addition, function parameter coverage could

be used by the proposed solution [45]. This definitely is not be able to be

applied for new test cases since all the mentioned measures need previous

executions. Therefore they have the same limitations of history based

35

solutions. They also combined the history with structural based solutions, so

the same limitations also are valid here.

3.2 Prioritization Techniques for New Test Cases
When the feature or system under testing has a large number of test cases, then

it’s very important to prioritize these test cases for better and effective testing and

early fault discovery. The importance of the prioritization process for new test cases

also comes from the fact about limited resources and strict time. Without

prioritization, the limited time might be spent with the test cases that are connected

with low priority requirements. Moreover, some test cases might discover the

important bugs. If the team didn’t start with these test cases, this may lead to late

discovery of bugs. It may need critical decisions on the whole system.

In the related work, a lot of work was done for prioritization of regression test

cases as described in the previous section. While for new test cases that are needed to

be tested using black box testing there is a very limited work in this area. The

following terms were used during the this research to search about any related work

for new test cases prioritization:

- “Prioritization for new test cases”, since the problem in this research is related

to new test cases. In the previous section, different regression prioritization

solutions were listed and there is a need to specify the ones that are

specifically proposed for the new test cases.

- “Black box testing prioritization”, since the new test cases in the testing

process are usually tested by black box testing where code is blinded for

testers, some solutions for new test cases might be discovered under the

mentioned expression.

- “Manual test cases prioritization”, new test cases are usually included with

black box testing that is done manually.

- “System test cases prioritization”, system testing includes new test cases that

are generated from the requirements specification document.

36

- “Functional testing prioritization”, because functional testing is a kind of

system testing, it’s also related to new test cases that are generated from

requirements.

- “GUI testing prioritization”, some coverage metrics were presented for GUI,

and for each new feature or system, a new GUI will be developed. Therefore

new test cases are needed with different combinations.

- “White box testing prioritization”, this expression was used in case there are

solutions under white box, then it might be possible to apply them on other

types of testing.

- “Component based frontend test cases prioritization”, since the test cases

prioritization problem in this research is itself connected directly with these

types of applications.

- “Component based frontend testing”, this is a general search about testing for

the component based application in order to see the final research in this topic.

The result from all of the above expressions was only the mentioned solutions

that were discovered and discussed in the regression testing section [36][38][39]. As

was discussed before, these solutions are classified under requirements based

solutions, where they are applied either for new test cases or for regression testing.

In all mentioned solutions, some factors were only used for new test cases and

for regression test cases at the same time. Additional factors are applied only for

regression test cases. The three previous solutions that used the same factors:

customer priority, requirements change and development complexity. These factors

are general and could be applied to all types of applications. On the other hand, what

about specific types that have more factors that might have an impact on the testing

phase and test cases prioritization? For example when the front end framework is

considered as a component based architecture, these components are reused in the

same feature in different contexts and integrations. Also what about the factor of

development expectations when something is missed as usually from development,

then no accurate expectations. Moreover, in most cases it’s very hard to measure how

the requirements could be changed and when. Therefore it may be very important to

find new techniques for new test cases prioritization.

37

3.3 Related Work and the Research Gap Summary

This research has found a solution for web applications that are going to be

built using component based architecture front end frameworks. At the same time, the

prioritization has to be done for new test cases that are going to be tested for the first

time. Since this is a web application then the testing needs to be done by blackbox

testing that is usually used manually for web applications that have a graphical user

interface. From related work that was discussed in previous sections, the following

table 3.1 provides a summary for all mentioned solutions. In addition, Table 3.1

illustrates if the solutions are able to be applied with this research gap which is related

to the mentioned kinds of web applications.

38

Category # Solution Is it
applicable
with new
test cases for
web
application?

Weaknesses of applying
it with new test cases for
web applications that
have component based
frontend frameworks

Structura
l
Coverage
Based
Solutions

1 Branch coverage [28] No - Can’t applied with
manual and black
box testing because
it needs source
code

- Needs stable
source code to get
accurate measures,
so it’s suitable for
regression

2 Statement Coverage
[28]

3 Statement coverage
[25]

No

4 Function Coverage
[25]

5 Interaction coverage
[26]

No

6 Events Coverage [26]

7 Coverage of new
changes in the source
code [27]

No - Can’t applied with
manual and black
box testing because
it needs source
code

- It was designed for
regression test

39

cases that are
related to previous
versions of the
code. While for
new test cases there
is no previous code
or version

Fault
Detection
Based
Solutions

8 Probability of test
case failure by
branches [28]

No - Can’t applied with
manual and black
box testing because
it needs source
code

- Needs stable
source code to get
accurate measures,
so it’s suitable for
regression

- When using
versions this might
be considered as a
history based
solution, for new
test cases there are
no previous
versions.

9 Probability of test
case failure by
statements [28]

No

10 Probability of test
case failure by
statements [25]

No

11 Probability of test
case failure by
functions [25]

No

12 Probability of test
case failure by
branches and
versions [29]

No

13 Probability of test
case failure by
statements and
versions [29]

No

History
Based
Solutions

14 Test cases faults from
previous execution
with function
coverage [30]

No No History for new test
cases because the new
feature is not released yet,
this means there are no
executions for test cases to
collect data about test
cases.

15 Historical value from
previous executions.
Value = test case
time + faults
severities in previous
executions [31]

No

16 Test case
performance
measures [32]:
1- The ratio of how

No

40

much the test case
detected faults in the
total number of
previous releases.
2- The duration of
the test case that
wasn’t executed
3- Priority of test
case in previous
releases

17 Historical faults for
test case from
continuous
integration
executions [33]

No

18 Test case cost by
faults and severity
with genetic
algorithm [34]

No

Requirem
ents
Based
Solutions

19 Customer priority +
Requirements
volatility +
implementation
complexity [36]

Yes - Can’t expect the
requirements
volatility in most
cases

- General approach
which doesn’t take
in consideration the
UI components

- Complexity might
not be connected
with priority

20 Customer priority +
Requirements
volatility +
implementation
complexity + fault
proneness [36]

No New test cases have no
values for faults, so this
solution was designed on
top of the previous one for
regression testing that has
history

21 Customer priority +
Code Complexity +
Rate of Requirements
Changes [38]

Yes - Can’t expect the
rate of
requirements
change in most
cases

- General approach
which doesn’t take
in consideration the

41

UI components
- Complexity might

not be connected
with priority

22 Customer priority +
Code Complexity +
Rate of Requirements
Changes + Faults
severity + Usability +
Application Flow
[38]

No - New test cases
have no values for
faults

- Usability measure
is considered as
feedback after
releasing the
software, so it can
be used in the next
release for
regression as
history.

- Application flow is
also connected
with different
releases and for
new test cases there
is no release yet

23 Customer priority +
Requirements
volatility +
implementation
complexity + fault
proneness +
Completeness +
Traceability [39]

No - New test cases
have no values for
faults

- Completeness of
requirements has to
be measured after
releasing the
software and this is
not available for
new test cases.

- Traceability is
measured also
between different
releases and it’s not
available for new
test cases.

24 Request Quota
Requirements
coverage for Web
services [37]

No - It’s used only for
web service and
it’s connected with
its architecture.

- Requests Quota
might be only a
part of test cases

42

that are needed to
be tested as
nonfunctional
requirements.

- Needs source code
and will not work
with blackbox
testing.

Other
Solutions

25 Combination of fault
detection and
execution time
history [40]

No No history for new test
cases, so it’s also used for
regression test cases

26 Combination of
execution time
history and
requirements
coverage with
genetic algorithm
[41]

No No history for new test
cases, so it’s also used for
regression

27 Combination of code
coverage and
historical test cost
[42]

No No history for new test
cases, so it’s also used for
regression

28 Data Flow for
program variables
[43]

No Needs source code and
technical knowledge and
this not available for
manual testing of new test
cases

29 COTS changes by
classes or solutions
interactions [44]

No - Works for
minimizing the
number of
regression test
cases, so it works
only with test cases
that are connected
with components
that have new
change

- Needs source code
access to check
classes that are
connected with
targeted
components.

 Table 3.1 Summary of prioritization solutions and the possibility of using them for this

research

Thirty two solutions were summarized in the above table, it’s clear that most

solutions are not able to be used for the test cases prioritization problem. Most

solutions need source code in order to measure the coverage. This means the system

type itself is not important if it’s component based architecture or not. Doesn’t matter

if the application is a web application, mobile or desktop. Using the source code needs

a level of technical knowledge and this in different cases is not available for the

testing team who is working by blackbox testing. As a result, if the test cases

prioritization problem needs to be resolved by any solution that needs source code, at

the same time, the testing team doesn’t have technical knowledge, these solutions are

not applicable. Moreover, measuring the code coverage, regardless of what is the

coverage type, needs to use a stable and frozen code. This is required in order to take

the correct coverage per test case, and this is not the case for the new test cases. The

code will not be stable, different bugs, fixes and changes are going to be added for the

new code. So, all of these solutions are suitable for regression test cases that have

stable code and tested from previous releases. Other available solutions need history

43

30 Number of requests
from previous
executions for Web
applications [45]

No - Different test cases
are not connected
with requests.

- No previous
history and
executions

31 Pages coverage for
web applications [45]

No - Different test cases
are not connected
with more than one
page

32 Functions parameters
coverages in web
applications [45]

No - Needs source code
access and
technical
knowledge
therefore this is not
the case with new
test cases and
manual testing

data from previous executions of previous releases, and this is not this research

situation. This research target is a new testing that doesn't have any previous

execution to collect data from, therefore there is no history.

From the summary table, there are only two solutions that might be used for

the test cases prioritization problem, their numbers are 19 and 2 in the above table.

These two solutions have clear weaknesses for applying them in the problem

application which is connected with component based frameworks. Even if they don't

work for a specific kind of application, they don't consider the impact of using

component based architecture. Also, these two solutions consider an expectation

about requirements changes, and this is not easy to be expected correctly in most

cases.

As we can see, there is a clear gap in research with new test cases that do not

have a stable source code or a previous history yet. Hence, This research solution will

be designed specifically for web applications that use component based front end

frameworks. This means the complexity and simplicity of this architecture will be

considered in the prioritization. Source code or historical data are not important at all,

and this means the solution will fit the new test cases without any wrong or missed

data.

44

Chapter 4. Research Methodology
__

This chapter introduces the research methodology and experiment design. It

provides the details for each stage of the experiment and the expected output from

each one. This chapter also describes the datasets, how to create random datasets with

any size for testing and what are the required fields to design the dataset. In addition,

this chapter describes the tools and framework that has been used to implement the

solution.

In this research there are two phases, the first one is solution design that

includes the chromosome structure, fitness functions and datases design . Different

targets have to be achieved from the designed solution, while the final output has to

be a prioritization framework that will increase the test cases coverage and the high

priority test cases coverage. It has to be helpful for the resources that are going to

execute test cases with no previous knowledge about the priorities and requirements.

The solution has been implemented by four genetic algorithms, after that a violation

algorithm has been applied to find and remove any test case that violates its

dependencies. The whole implementation details are presented in chapter 5, while this

chapter focuses more on the test cases prioritization problem and genetic algorithms

design.

In the second phase of this research, several experiments have been presented

to measure the solutions quality. In addition, the minimum execution time has been

measured for each algorithm. Several datasets have been used to take these

measurements later.

4.1 Facebook Dataset
Since there is no previous research about the research test cases prioritization

problem, then there is no dataset for a website that was built using component based

frontend frameworks. This research added a contribution by creating a new dataset for

a website which was built using frontend component based framework. Facebook as a

45

web application which was built using react framework will be used for creating the

test cases as a new dataset. In addition to the Facebook dataset, several datasets have

been created for this research randomly. These datasets have the main and required

values for doing experiments without having a real description for their test cases.

Therefore, they could be considered as a simulation for real test cases in order to

measure the impact of dataset size during the experiments phase.

Choosing the Facebook app is related to having different components that are

reused in different contexts and areas in the same web app. Therefore we can find

different components that are composed from other smaller or micro components. In

the Facebook application, other components that are not reused also could be found,

they are simple single components. Hence, there is a good diversity that helps in

testing the implemented solution. The test cases have to be documented in a high level

form by writing the scenario and the properties for each test case as represented in the

attached dataset in appendix. The following samples were taken from the generated

dataset:

 Figure 4.1 Dataset Sample represents test cases and their properties

46

From the above sample, the following properties were specified per test case:

- ID: it’s just a unique integer for the test case.

- Expected time: it represents the execution time for the test case including

preparing the input data for that test case.

- Test case priority: it’s a description that represents how much this test case is

important for the new feature to be released. This is also a representation from

a test engineers perspective, usually it has a value from the following set:

Highest, High, Medium, Low, Lowest. As a result, this may lead to different

test cases with same priority even some of them may have higher priorities.

- Component priority: if the test case execution target is to test a new

component behaviour, and this component has to be built by the frontend

team, then the component itself should have a priority. This priority has to be

evaluated by the frontend team which knows exactly how it will be used or

reused later to implement the feature. Once the frontend team had more

expectations to reuse the component in the feature, definitely this has to

increase its priority. To represent this in the research dataset, a list of all

components that are needed for the dataset was created, it represents a sprint

or release. Then a value for each component was given to represent the

priority, it’s attached to the same link of test cases in the appendix. Numbers

had been assigned starting from 1 which represents the lowest priority

component. While the total number of components in the targeted release

represents the highest component.

- Test Case Dependencies: some test cases need different steps for execution,

moreover, some steps need different modules to be implemented. The

execution steps or modules may need other components. Moreover, the test

case may target to verify a behaviour of the component that consists of micro

or other smaller components. On the other hand, the test case itself does not

target to test these smaller components or other steps components behaviour, it

needs to verify a behaviour for a special component. But as we can see, testing

the special component depends on other steps or it has dependencies with

other components. Therefore test cases might have dependencies or might not,

47

and this will have an impact on test case priority. This impact comes from the

fact that dependencies actually represent an important kind of testing, it’s

integration between components.

In order to generate the properties, the following examples illustrate the

situation:

- Example1: From Facebook app, let's say we have the following three

components with given names just for building this research dataset:

1. New Post View, from this component you can click to start writing a

new post, after that you need another component to actually write the

post. This component is just used for giving indication for users from

where they can add a new post.

 Figure 4.2 Facebook Component - New Post View

2. Write Post Component: it’s used for start writing text, uploading

photos or whatever the user wants to add in the new post.

 Figure 4.3 Facebook Component - Write Post

48

3. View Post Component: it’s used to display any successfully created

post.

 Figure 4.4 Facebook Component - View Post

From previous components there are several test cases that have

different dependencies, priorities and execution time. In Figure 4.4, there is a

test case to verify one behaviour of the “write post” component. In order to

verify a text post which is actually a behaviour testing for the “write post”

component, you need to click on “new post view” in the empty area. Then

after writing the text and clicking on the “Post” button, the text has to be

displayed in the “view post” component. Without the existence of these

mentioned components, verifying the test case of writing a new text post will

not work. Therefore “new pos view” and “view post” components are

considered as dependencies for the test case of verifying writing new text post.

While writing a new text post itself is connected with testing the behaviour of

“write post component”.

The “write post” component itself has a priority which has to be

specified by the frontend team as described before. This component is

frequently reused in the Facebook app and it’s connected with the base

functionality for Facebook, so if the targeted release has 50 components, then

it’s priority is the top one and it’s 50.

The test case priority has to be evaluated by the test engineer

depending on the business needs for the test case. In the example since the test

49

case is a basic one for facebook business it was evaluated as highest. The test

engineer also has to evaluate the execution time for the test case including test

case input data, so in the example it’s evaluated as 5 minutes.

 Figure 4.5 High Priority Test Case Properties sample includes dependencies

- Example 2: another simple example for a high priority test case that doesn’t

have any dependencies, verifying the username displaying in the user profile.

It’s a too simple test case but it's an important one for business. If we consider

the targeted release doesn’t include the registration, then there are no

components dependencies for this test case. Also, developers don't need to

build any components for this test case, so it’s not connected for any custom

component, it’s a simple label which is a builtin component and developers

just need to use it. Figure 4.5, represents simple test case properties from the

dataset.

50

 Figure 4.6 Simple High Priority Test Case Properties sample that does not include

dependencies

4.2 Solution Design
The competition between the first two objectives or research questions have

been resolved by genetic algorithms in this phase. The objectives are maximizing the

coverage of test cases that have high priorities and at the same time increasing the

coverage of the whole test case. These two objectives have to be done within a

specific time, this means when the decision maker wants to increase the coverage of

important test cases, this may consume more time. At the same time, this leads to

having less time for doing testing of other test cases that have lower priorities. To

achieve the previous objectives, the mentioned test cases properties could be used

with genetic algorithms. In the generated chromosome that represents the solution,

different test cases might have higher priorities than test cases of dependency

components that are important for testing other test cases. Therefore, one important

objective is to minimize the violation of these test cases that have higher order than

important dependencies. After implementing the solution using the specified

algorithms, the best execution time for the algorithm will be selected as the final

solution. Figure 4.2, represents the work that has to be done in phase 1.

51

 Figure 4.7 Phase 1 objectives and solution result

Since Each test case has components, dependencies and priorities, then a

weight for each test case could be calculated by summation of the previous values.

When the test case has more dependencies, this necessarily increases the test case

weight and it’s an important indication for the final test case priority. As a result, the

high priority test case has high weight, while the low priority test case has low weight.

Therefore a new weight value was added to each test case in the dataset. To illustrate

the weight value, by returning back to Figure 4.4 in example 1, the following

properties were collected:

- Test case manual priority: highest

52

- Component priority: 50

- Dependencies: “New Post View” and “View Post” components

To calculate the weight, the manual priority component has to be converted to

a numeric value. Therefore since there are five values for manual assigned priority for

test cases, they have a numeric values as the following:

- Highest=5

- High=4

- Medium=3

- Low=2

- Lowest=1

By return back to example 1, if the assigned priority of “New Post View” is 49

and “View Post” Component has 48, then the weight value for this test case will be:

- Weight = Test Case manual Priority (TC P) + Component Priority (CP)

(4.1)

Where:

- Tect Case manual Priority (TC P): is a priority given by a test engineer

who analyzed the requirements and wrote the test case. It’s an

indication of how much the test cases are important to business

requirements. The test engineer here doesn’t have to know any

technical knowledge to specify the priority.

- Component Priority (CP): it’s a priority that has to be specified by

frontend engineers who analyze the requirements from UI

perspectives. This priority is an indication of how much this

component will be reused in the system and how much this will open

different areas for requirements implementation.

And by using the previous values as examples it will be as the following:

- Weight= 5 + 50 = 55

On the other hand, for the test case in example two which was represented in

Figure 4.5, there is no component so the weight will be as the following:

53

- Weight = 5 +0 = 5

Answering the first question which is connected to increasing the high priority

test cases, means increasing the total weight for a subset of test cases. So That, with a

limited time of sprint or release, the ability of increasing the total weight reflects how

the coverage of high priority test cases looks like. Since each test case has expected

execution time, then increasing the total weight will be limited by the execution time

of test cases. On the other hand, answering the second question could be done by

increasing the total number of test cases that are going to be executed in the coming

release. Increasing the number of test cases also will be restricted by the total

expected execution time of the selected test case subset. As a result, a competition

between increasing the total count of test cases and increasing the total weight of

selected test cases in a specific time.

4.2.1 Chromosome Representation

The required solution for prioritization is a list of test cases that have

an order that indicates the priority. This means, each test case ID is an

identifier for the test case, while it’s order is enough to represent the priority.

Therefore, chromosome structure has been represented by a list of test cases

with a specific order, while each test case has been considered as a gene as

represented in Figure 4.6. Each gene in the chromosome has two properties

that could be used to simulate test cases properties as the following:

- Content: it can be used to represent the test case ID that has to be

assigned by the testing engineer to each test case in the test suite. Test

case ID is an integer number and it’s usually an index which has to be

incremented by 1 for each new test case. So That in the generated

dataset for this research, the first test case ID is 0, the second is 1 and

so on.

- Index: it simply represents the gene location in the chromosome,

therefore it is used to represent the test case order in the chromosome.

As a result. This order is considered as the priority of the test case in

the generated solution.

54

 Figure 4.8 Chromosome Structure Representation

The final solution is a new sequence of test cases, they have to be

ordered in a way that has the highest possible total weight of test cases and the

highest total count of test cases within a limited release time.

4.2.2 Objective Functions

Since there is a competition between two clear objectives then the

generated solution by any selected genetic algorithm have to achieve the

following

1. Maximize the number of high priority test cases depending on the

available release time and by calculating a test case weight. This means

increasing the total weight has to include the test cases with high

weights, more test cases from high weights means more test cases

number from high priority test cases. And this answers the first

research question.

2. Maximize the number of test cases in the final solution. The test cases

are represented by genes, while the solution is a chromosome,

therefore the algorithm has to increase the number of genes in the

chromosome. Since test cases have not to be duplicated in execution,

then the generated chromosome has to have unique genes or unique

test cases depending on the available release time. Achieving this goal

means increasing the total coverage of test cases, which is the second

objective in this research and it answers the second research question.

3. Minimize the violation in test cases that have dependencies in the

generated solution, therefore once finding a test case in the

55

chromosome that has dependencies with high priorities, and this test

case order is before that priorities, remove that test case.

Each release of software has a list of new test cases that have different

priorities and they have to be tested for the first time. Then each release r has n

number of test cases TC, therefore test cases set per release is represented by

the following:

TCr = {T C1, T C2, T C3,T Cn} . (4.2)

Where:

- r, it’s the targeted release which has the prioritization problem.

- TCr: it’s the list of new test cases in the targeted release where each

one has some properties.

- TC1: it’s the first test case that has index 1, where the index is an ID

which has to be assigned for each test case by the testing engineer.

- TCn: it’s the last test case in the targeted release r.

Each test case has an expected execution time TCt, and the release

itself has an expected deadline that adds some limitations and restrictions on

the test cases total execution time. Achieving the first objective by increasing

the high priority test cases coverage means increasing the total weight of test

cases as mentioned in previous sections. The total weight for any subset of test

cases is represented by the following function:

CT W CW i CW i CW i CW kT = ∑
k

i=1
T = T + T + 1 + . + T

(4.3)

Where:

- TCTW: it’s the summation or the total weight for a list of test cases

that have to be executed.

- : is the first test case in the list. i

- : is the last test case in the list. k

56

Since Each test case also has an expected execution time, then the total

execution time of all test cases is the summation of all test cases TCTT, it’s

represented in the following equation:

CT T CT i C1 C2 CkT = ∑
k

i=1
T = T + T + . + T (4.4)

As a result, the first objective could be represented by the following:

, CT W CW iT = ∑
k

i=1
T CT T ≯ Rt T (4.5)

Where:

Rt: is the release expected time.

Therefore the above function can be used to specify the list of test

cases that have the maximum total weight without exceeding the release time.

On the other hand, Increasing the total number of test cases is the

representation of increasing the test cases coverage. Regardless of the

percentage of the high priority test cases in a selected subset of test cases, the

total number of the count of test cases in any subset is represented as the

following:

CC T = T Cs| | (4.6)

Where:

- TCC: it’s the count or the total number of test cases in a test cases

subset.

- TCs: is a test cases subset.

Now the second objective that answers the second question by

increasing the coverage of total test cases is represented by the following by

considering the release time:

,CC T = T Cs| | T CT T ≯ Rt (4.7)
The above equation means that increasing the total number of test

cases necessarily increases the coverage, but there is a limitation in release

time. This means, decision makers may exclude some minor test cases in case

there is some delay that might prevent them from being on time for release

57

date. Therefore increasing the coverage or the count of test cases, has not to

exceed the release time.

Achieving the first objective by increasing the total weight of test

cases, most likely means more execution time. The reason is that the total

weight for each test case comes from business and technical components.

Business priority is represented by testing priority, while the technical is given

by considering the component priority. Therefore the total weight will be high

and these test cases might need more time for execution, preparing data and

using the system for the first time. Adding more steps for test cases means

more dependencies have to be considered and this will also increase the time

for high test cases. Therefore high priority test cases most likely will consume

more time in execution. This will lead to a competition with the second

objective. Because increasing the count of the total number of test cases in the

selected subset, means picking the test more test cases with low execution

time that will not break the release date or time. At that moment exactly,

decision makers need to compromise or decide what to do. And this situation

is repeated frequently in different situations when there is a long list of test

cases, restricted time and different obstacles. All of this may lead to

consuming more time in unexpected steps, then this will reduce the rest of

time that will be needed for testing.

4.3 Random Datasets

Four datasets were created randomly in order to use them later in the

experiments phase. The purpose of creating them is having different datasets

with different sizes and values that may affect the algorithms. So creating

random datasets was an easy way to have any size with different fields values.

Dependencies, test case description, test case priority and component priority

were not specified. Instead, only three fields were specified for each test case:

ID, Weight and Expected execution time. The reason for creating those values

only is related to how the fitness functions will be calculated later. Regardless

how the weight came from, it will be required later for creating the solution.

58

Therefore all random datasets could be considered as the final format for the

required dataset to run the algorithms. Considering the Facebook dataset, five

datasets will be included with the following sizes: 163, 400, 600, 800 and

1000 test cases. All datasets are available on the attached link in appendix.

To illustrate the content of the random dataset, Figure 4.9 displays a

screenshot from 400 test cases dataset, while Figure 4.10 displays it from 1000

test cases dataset.

 Figure 4.9 Sample from a random dataset with 400 test cases

 Figure 4.10 Sample from a random dataset with 1000 test cases

59

As we can see from both Figures 4.9 and 4.10, the dataset contains

only three columns. First one is A and it represents the test case ID, therefore

you can see IDs from 0 to 12 in sample 4.9 for 4000 test cases datasets. While

Figure 4.10 displayed a sample with IDs from 975 to 987 from the 1000 test

cases dataset. The second column B represents a random number for the

summation of the test case priority and the component priority. It was

represented in the facebook dataset as Weight. Therefore, here instead of

having separated columns for those values, a final random number is

generated as simulation. This number was generated by the available random

function in google sheets. For each dataset a min and max number was

specified and a random number was generated between these edges. For

example, to the 1000 test cases dataset, random values were created between

10 and 600 as described in the following screenshot.

 Figure 4.11 Generating the random values using random function

The same way was applied to generate weight values for other datasets,

the difference is the min and max values for each dataset.

The third column in random datasets C is the expected execution time

for each test case. It was also generated randomly using the same function of

generating the weight. It just considers the min and max difference between

weight and time, therefore it was selected to be between 10 and 40 for creating

the time. This way will help to produce any required size for testing anytime.

It also helps to increase diversity in the problems by generating different

values of weight and expected time.

60

4.4 Development Environment

JMetal framework will be used for this research implementation, it’s a

java based framework that is used for solving optimization problems [63]. It

supports different metaheuristics algorithms like NSGA-II, PEAS, MOCell

and others [63]. Version 5.6 was selected to implement the solution. IntelliJ

IDEA will be used as IDE and the following algorithms will be used to

implement the solution in JMetal:

- NSGA-II

- IBEA

- MOCell

- SPEA2

61

Chapter 5. Experiment Setup and Run
__

This chapter illustrates the whole details about experiment setup by jMetal

framework. It introduces the research test cases prioritization problem definition that

has to support multi-objective optimization, and this means fitness functions that were

illustrated in the previous chapter have to be defined in detail here. the Test cases

prioritization Problem definition section also illustrates how to read the dataset with a

specific form, where that form is required to build the test cases prioritization problem

correctly.

The next important thing for experiment setup and run is calling the selected

algorithms. This chapter illustrates how to use the required algorithms that are

supported by jMetal framework, it illustrates the algorithms settings and how to

connect them with problem definition. Calling the required algorithms needs to define

a specific data type and to do some modifications to support this research test cases

prioritization problem, all of these details have been introduced in this chapter.

As described in previous chapters, the third objective after doing optimization

is minimizing the violation of test cases for the generated solutions. This means, if

dependencies come after the required test case in a generated solution, there is a

violation. An algorithm was built to do this and this chapter illustrates it’s

implementation details.

5.1 General Design Structure
jMetal framework supports defining any new problem, regardless it’s

single objective or multi objective optimization problem the same structure is

used. For the test cases prioritization problem implementation, defining the

problem is the first step to build the solution. To define a problem, a new class

has to be created, it has to read the dataset in the correct format and then it has

to convert it to a form that is needed to work with jMetal structure. It also

defines the number of objectives and how to calculate the fitness functions, all

62

of these details are illustrated in the problem definition section. For this

research experiment, a problem definition with class name “TCP” was created

under multiobjective problems directory in jMetal project as described in

Figure 5.1.

 Figure 5.1 TCP problem definition class

After building the problem definition, new classes have to be created

for each genetic algorithm that is needed to be supported. These classes are

known as algorithm runners, each algorithm has its own runner, while each

runner can call any problem and can use any genetic algorithm. In this

research, six algorithms runners were built for six genetic algorithms, Figure

5.2 shows the runners' classes names. All runners call the same prioritization

problem TCP.

63

 Figure 5.2 Algorithms Runners’ Classes

For finding violations of test cases in the generated solutions, after

running each genetic algorithm, a violation algorithm has to be called.

Therefore a new class was created to implement this algorithm, this class was

called Find violation and it’s all related details have been illustrated in coming

sections.

5.2 Problem definition
Since the research contributes to provide the best prioritization for

decision makers, then all test cases have to be included at least once without

repetition per solution. Therefore permutation is selected to define the test

cases prioritization problem (TCP). As described in chapter 4, the

chromosome content includes the test cases IDs, and in the generated dataset,

test case ID is integer number. As a result, the TCP problem is considered as

an Integer permutation problem. jMetal framework supports these kinds of

problems definitions, so in this experiment design, the TCP problem definition

class extended “AbstractIntegerPermutationProblem” abstraction class.

The problem definition has to define the number of variables and to set

the number of objectives. Since the research problem has two competitive

objectives then, the TCP class has to set two objectives. On the other hand,

TCP has to read the dataset and evaluate the generated solutions per

64

generation. Reading the dataset has to be used to set the number of variables

represented on a screenshot from TCP constructor in Figure 5.3.

 Figure 5.3 setting the number of variables and objectives

Two main methods were built to read the dataset and evaluate

solutions inside TCP class as the following:

A. Read Problem: it reads the Dataset and converts it to the required form

for fitness functions later. As described in chapter 4, test cases fitness

functions require their weight. On the other hand, expected execution

time per test is required for stopping criteria. Therefore the experiment

dataset was designed to include all mentioned values. For reading the

TCP problem with the required data, a new csv file was extracted from

the original dataset with three columns: Test Case ID, Test Case

Weight and Test Case expected Execution Time, Figure 5.4 shows a

dataset sample from the extracted file.

 Figure 5.4 Dataset sample from the extracted input file

65

Once the Read Problem method, reades the file, it defines a

multi dimensional array with three columns and dynamic number of

rows. Three columns represent the three values from the Dataset csv

file. The Array stores the same values with the same order from the csv

file as the following: column 0 is used for Test Case ID, column 1 is

used for Test Case weight and column 2 is used for expected Execution

Time. On the other hand, the number of rows for the dataset tarray

represents the number of test cases, therefore it’s a dynamic number

depending on the number of test cases that were added to the dataset

file. The method at the end returns the dataset array which has been

used for generating solutions and calculating the fitness functions later.

Figure 5.5 shows a screenshot for that method form TCP problem

class.

 Figure 5.5 Signature of Read Problem method in TCP problem

The number of test cases that represents the number of rows on

the returned array, was used as it’s described in Figure 5.3. It sets the

number of variables for genetic algorithms that are used later to find

solutions.

B. Evaluate: the second in TCP problem definition class is evaluation

method. It’s used to calculate the fitness functions for solutions per

generation. The TCP problem was considered as

“IntegerPermutationProblem” and solutions have to be declared

“PermutationSolution<Integer>”. This supports representing the

solution as a chromosome with integers values that represent Test

Cases IDs. As a result, the evaluate method was designed to accept the

66

“PermutationSolution<Integer>” solution as a parameter as described

in method signature in Figure 5.6.

 Figure 5.6 Signature of Evaluate method in TCP problem

For the TCP problem, since there are two objectives and they

were set in TCP class constructor, then two fitness functions have to be

calculated per solution. Both optimization objectives were declared in

chapter 4 with fitness functions. The first one was about increasing the

total weight of high priority test cases within a specific period of time,

while the second objective is to increase the number of test cases

within the same specific time .The Evaluate method calculates the first

objective by fitness1 and it uses fitness2 to calculate the objective 2.

To illustrate the evaluation algorithm and how it calculates the fitness

functions, Figure 5.7 represents the flow.

From Figure 5.7 the evaluation method could be represented by the

following steps:

1. For each solution, start a for loop from the first test case. Each

test case is represented by a gene, so each gene has the test case

ID and it has an index which is represented by loop iteration.

2. Check the remaining time that represents the available release

time for testing. If adding a new test case to calculate fitness

breaks that remaining time, the test case will not be added to

the fitness. For calculating the breaking condition, use the

expected execution time for each test case. It was stored in the

dataset matrix that was described in the Read Problem method.

3. In case there is no breaking for the remaining time, start

updating the fitness functions.

67

4. For the first objective increase the fitness1 by adding a new test

case weight. It was also stored through reading the problem in

the dataset matrix, inside the second column.

5. Update the second objective, which is calculated by fitness2.

To update fitness2, only increment the test cases number by

one. This means more test cases are included in the solution

with a specific priority.

6. Return to step 2.

 Figure 5.7 Evaluate Algorithm Flow

68

7. If there is a time breaking on step 2, leave the loop and get the

final values for the fitness values.

8. After having the final value for fitness functions, set the

solutions objectives.

To illustrate the above algorithm for the evaluation method, let's take

an example. In Figure 5.8, NSGA-II was executed and all solutions from all

generations were printed inside the evaluation method. The remaining time

was set to 70, this means for each solution, the evaluation method keeps

adding test cases to fitness functions until breaking the remaining time value.

Exceeding 70, will not add the test case weight to fitness1 and will not

increment the fitness2 that refers to test cases counter.

Referring to solution 0 in Figure 5.8, fitness1 is 200. This means the

high priorities test cases that were included in evaluation have a total weight

of 200. While for fitness2 value is 10, this means the first 10 test cases were

included in the fitness value without breaking the remaining time. Therefore,

if you check the variables on the same Figure 5.8, you will see that test cases

from variable 68 to 128 were included in the fitness functions values. With

variable 89 that represents test case ID 89 and which is next one to 128, the

time was breaked. Referring to execution times that were printed for solution

0, we can see that time before breaking the remaining time is 57. On the other

hand, the specified execution time of test case 89 in that run was 17. Including

test case 89 leads to 72 as total expected execution, and this number will break

the remaining time which was set as 70. As a result, test case 89 was not

included on fitness functions values.

69

 Figure 5.8 Solutions from several generations with single Run

Referring to solution 1 in Figure 5.8, it displays how the weight

increased to 120 therefore fitness1 has higher than solution 0. On the other

hand, fitness2 is 6 which is less than fitness2 of solution0. This means test

cases execution time was not breaked from variable 48 to 133, total execution

time was 68 until test case 133. Once the expected execution time was

considered with test case 138, remaining time was breaked. That was related

to adding 3 as expected execution time for test case 138 to the total expected

execution time for all previous test cases. Total number will be 68+3 and 71

breaks the remaining time which was specified as 70. As a result, test case 138

was not included in evaluation.

5.3 Algorithms Runners

In the design structure section, the second main class that was defined

is algorithm runner. By runner class, problem definition and genetic algorithm

builders are called. In this research design, each algorithm has its own runner,

therefore any genetic algorithm has its own settings and setup.

70

Related to the problem type that has to support integer dataset and to

include all test cases in the resulted solution, then

“<PermutationSolution<Integer>” was used for all genetic algorithm runners

classes. Several parameters had been declared as a setup for each required

genetic algorithm runner with the mentioned data type. For all mentioned

algorithms in this research, several parameters have been initialized inside the

runners classes as the following:

- Crossover: PMXCrossover was used to initialize the crossover

parameter. The reason behind this choice is the problem type

that needs integer permutation. As described before, the genetic

algorithms for the TCP problem have to create a solution that

includes the whole test cases in the dataset. At the same time,

the genes in the generated solutions have to be represented by

integer values that represent test cases IDs. PMXCrossover

supports integer permutation therefore it was selected to fit the

problem type.

- Mutation: PermutationSwapMutation was selected where two

positions for two selected genes will be swapped. Permutation

was selected to support the problem type that was clarified

previously.

- Selection:

BinaryTournamentSelection<PermutationSolution<Integer>>(

new RankingAndCrowdingDistanceComparator) was selected.

It ranks the individuals with relative ranks and then it will

select the one with best rank.

To run any genetic algorithm in jMetal, population size and max

evaluations values have to be defined. In addition, some genetic algorithms

need to define the archive size. Inside the runner class for each algorithm these

values were initialized in addition to other algorithms parameters for initial

runs. Table 5.1 represents the whole settings that were needed to all

algorithms.

71

 Table 5.1 Initial Runs Setup

Using the above configuration, required genetic algorithms can be built

using jMetal by algorithm builder class. So in each algorithm runner, the

algorithm was defined depending on the algorithm builder signature. As

NSGA-II works, it doesn’t use an Archive, therefore no archive size parameter

on its own builder as described. While for IBEA, it uses Archive therefore

archive size was added to it’s builder as parameter. So each algorithm defines

their own and required parameters.

All genetic algorithms that were selected for this research in jMetal

support integer permutation that was selected for the TCP problem. On the

other hand, not all builders are dynamic to accept any type, IBEA builder was

one of them. Therefore, different modifications were done on IBEA builder to

support integer permutation.

After running each genetic algorithm, the resuled solutions will be

printed on a csv file Figure 5.9 shows.

72

Algorithm Parameter Value for initial run

Crossover Type PMXCrossover

Crossover Probability 0.9

Mutation Type PermutationSwapMutation

Mutation Probability 0.2

Selection Type BinaryTournamentSelection

Population Size 100

Max Evaluations (Iterations) 500

Archive Size 100

 Figure 5.9 Four solutions were resuled and printed from running an algorithm

In the above Figure 5.9, NSGA-IIRunner was executed with the initial

parameters, the result was four chromosomes or solutions from that run.

NSGA-IIRunner printed these solutions on a csv file, the screenshot includes

only parts of the included test cases per chromosome or solution. Each cell in

the csv file presents a test case id for the generated solution, it’s also

considered as a gene in the resulting chromosome.

After running any algorithm class, the generated solutions will be

plotted to see the pareto font. For the previous run in Figure 5.9, the pareto

front plot is shown in Figure 5.10.

 Figure 5.10 Pareto Front for the generated solution in Figure 5.9

73

Generated solutions from executing genetic algorithms have to be

passed to the violation algorithm. The implemented Violation algorithm will

give the chance to decision makers to take the suitable decision they want with

the violated test cases. FindViolation algorithm will be discussed in detail in

section 5.4. To briefly summarize the flow inside the runners classes, check

Figure 5.11.

 Figure 5.11 Summarization of Runners Classes Steps

All algorithms runners have the same steps, same parameters values

for the initial and same dataset csv file. In addition the result has to be printed

74

on a csv file for each runner, also the result from violation will be printed on a

separated file.

5.4 Find Violation Algorithm
Each test case has to be executed in an order that respects the

dependencies test cases regardless of the priority. This means, test case TC [i]

might have higher priority than it’s dependencies from a business need

perspective. At the same time, some dependencies have to be tested before the

TC[i] to make sure all required components for testing TC[i] are working well.

As a result, test case violation is defined when TC[i] has order in the generated

chromosome before its dependencies. In other words, for each solution,

finding TC[i] with priority that is higher than depenances priorities will cause

violation for TC[i].

Find violation algorithm was designed to find violations for any test

case in the generated solution. It receives any solution as a parameter

regardless of the solutions how it was generated or what was the genetic

algorithm. It has to know dependencies for any test case that decision makers

have to find its violation. In this research after generating solutions by any

runner class for each algorithm, the find violation algorithm was called. The

whole generated population that contains all solutions has to be passed as a

parameter to the algorithm. The Find Violation algorithm then will write the

solutions on a new file with marking the test cases that have any violation. As

a result, decision makers will have two files, one for all solutions regardless of

the violation. While the second solutions file will contain all solutions with

violations.

For this research experiment, and for running a find violation

algorithm, a new dataset file was extracted from the original dataset. This file

is a csv file that contains only two columns as shown in Figure 5.12. First one

is for a list of test cases IDs and the second column contains all test case

dependencies that are separated by commas.

75

 Figure 5.12 Test cases dependencies sample

As shown on previous Figure 5.12, on the first column, the test case

with ID 35 doesn't have any dependencies. While for the test case with ID 37,

it has only one dependency test case with ID 25. For Test Case with ID 142, it

has three dependencies, 25, 37 and 132, they are separated by commas in order

to process them later by the find violation algorithm.

To extract the dependencies file, each test case TC[i] from the original

dataset has to be checked by its component. If the test case component has any

other dependencies components, then dependencies test cases could be

generated. By referring to Figure 5.13, test case 142 is related to the

component with name “Comment”. On the other hand, it has three

dependencies components: “New Post View”, “Write Post” and “View Post” .

 Figure 5.13 Test Case with three dependencies components from the original

dataset

76

To generate the dependencies test cases, following the test cases that

are connected with dependencies components is the key. This step takes more

manual time than other steps. It also needs business knowledge from the

human resource who is responsible to do it. Moreover, it might be done in case

there is a critical need to respect dependencies, hence in some cases testing

might be done in parallel from different resources. Therefore, for this research

experiment, not all test cases were used to generate dependencies. Instead, the

experiment for finding violation was selected to represent the case where there

is a need to know only some test cases' dependencies. As a result, the

extracted dataset file for finding violation has some test cases with

dependencies, while the most test cases does not have dependencies.

After specifying test cases dependencies from the extracted file, the

Find violation algorithm works by checking the index of test case TC[i] per

solution and comparing it with dependencies indexes on the same solution.

Finding any test case index before any dependency, will mark the dependency

violation by adding the test case ID that has violation with.

For a specific test case in coming solution, if the test case dependency

index (TCDIndex) is larger than test case index, then violation is found. To

mark that discovered violation, “VF” text with dependency test case id will be

added to the test case that has violation with its dependencies. That way, any

test case has a violation with more than one dependency, all discovered

violations will be appended to the test case. To illustrate the algorithm by

example, for a random run of NSGA-II with default settings, the following 6

solutions in Figure 5.14 were generated without marking any violation.

 Figure 20.14 Six solutions from random run without marking violations

77

For the above solutions, the Find Violation algorithm was executed

with the same dataset that was described before. Test cases file with

dependencies has test case with ID 39, and 39 has dependency test case with

ID 27. For the second solution in the attached screenshot in Figure 20.15, test

case 39 comes before test case 27 (which is the last one the attached sample).

This means 27 has a larger index than 39, applying the algorithm will mark 39

as violation. The result from executing the Find Violation algorithm is shown

in the following Figure 5.15.

 Figure 5.15 Resulted Solution with Violations

From the above Figure, the test case with ID 39 was marked with “VF:

27”, this means for test case 39, a violation was found with test case 27. The

result was discovered depending on 27 index in the resulting solution. In

Figure 5.16, several violations also were discovered and marked, second

violation on the same second solution, violations on solutions 3 and 6.

Referring to Figure 5.12, it shows that 38 has a dependency with 26

and this is the form for all other violations in the dataset file that contains

dependencies. Following up for this test case in solution 2 that was shown on

Figure 5.16, the test case 38 was marked as “VF:26” . In the same figure 5.15,

test case 26 doesn’t appear on the screenshot because it has a larger index that

was not able to be taken in the same screenshot. On the other hand, for

solution 5, test case 26 is the second one in the generated solution as

represented on Figure 5.15. While test case 38 comes later like Figure 5.16

shows.

78

 Figure 5.16 Test case doesn't have violation in another solution

From Figure 5.16 we can see how the same test case might have

violation on a solution while it doesn't have on another one. The whole idea as

discussed before depends on a test case order in the generated solution, or it’s

a gene index.

79

Chapter 6. Experiment Results and
Analysis

__

Quality indicators are available for multi objective optimization

algorithms to evaluate the generated solutions quality using Preto Front [13].

In this chapter, several experiments have been done in order to measure the

quality of each algorithm. Quality has been measured for the resulting

solutions by hypervolume and execution time. For doing these experiments

and taking measurements, the five mentioned datasets in chapter 4 have been

used. Therefore a comparison was done for each algorithm and each dataset,

then we can see the impact of increasing the datasets size.

jMetal framework supports calculating several quality indicators,

therefore hypervolume values have been collected directly by the available

jMetal methods. Other tools like RStudio have been used for data analysis

like generating box plots.

In coming sections, comparison has been done for all datasets and

algorithms by measuring the HV mean and median. All experiments have the

same common setting in the same experiment. On the other hand, all

experiments have been done without the violation algorithm. The reason is

related to the fact that the violation is not algorithm dependent, in other words,

the violation is a common algorithm. Therefore it doesn't make sense to do

experiments for genetic algorithms with the violation, or excluding it doesn’t

affect the values that have to be measured. After measuring the HV for all

algorithms and datasets, another experiment is presented for measuring the

impact of available time. The target of the mentioned second experiment is to

see how the available time which is considered as constraint affects the HV.

The Last experiment has been done to measure the minimum execution time

that is required to have a stable quality for each algorithm.

80

Each experiment was done using the five mentioned datasets in chapter

4. These datasets are described in table 6.1 with the number of test cases.

 Table 6.1 Datasets list and their test cases

From the above table, we can see that fcbk163-dataset represents the

real dataset that was generated from the Facebook web app. While the other

four datasets were randomly generated.

6.1 Finding the Minimum Execution Time
The target of this experiment is to find the minimum required

execution time for each algorithm. The minimum algorithm execution time

could be measured at the moment of starting having stable value of HV.

Therefore experiment was designed to measure the HV values on several time

stamps on a specific period of time. For each algorithm, time period was

specified by milliseconds as a stopping time in jMetal for the algorithms,

while the algorithm is working before reaching the time stopping condition,

HV values were captured.

For NSGA-II algorithm, it has already two implementations in jMetal,

one with max evaluations as stopping condition, and the second one is time as

a stopping condition. On the other hands, other algorithms were only

implemented with max evaluations as a stopping condition. Therefore, for this

experiment, three new implementations have been created to support time as a

81

Number of test cases

Fcbk 163-dataset 163

400-dataset 400

600-dataset 600

800-dataset 800

1000-dataset 1000

stopping condition. All algorithms have implemented a new method for

stopping conditions that overrides the original one as described in Figure 6.1 .

 Figure 6.1 stopping time condition

After implementing the new algorithms that support time as a stopping

conditions, a new list of builds were executed to measure the time per each

algorithm and per each dataset. For each algorithm, the same settings of

previous experiments were used. An additional important common value for

all algorithms is the remaining time in problem definition. For each dataset,

the remaining time is fixed with all algorithm executions, and the value was

selected to be something between a small and large value.

On previous experiments, max evaluations value was fixed to all

algorithms by 100,000. While for this last experiment as the max evaluations

is not used, the stopping time was fixed to all algorithms as 200 seconds.

Therefore HV value was measured during that period on different timestamps

as represented in the following list of charts.

1. NSGA-II Results

All HV values were captured in Table 6.2 for all datasets with

NSGA-II algorithm. The table shows there is a minor difference between all

captured numbers. If we added more focus to the captured values, we can see

that the HV for fcbk163-dataset is stable from the first second. While for other

datasets, by 30 seconds we can have stable values that are too close together.

82

Time (s) Fcbk163-
dataset

400-dataset 600-dataset 800-dataset 1000-dataset

1 0.5137 0.5738 0.2970 0.3030 0.3842

2 0.5171 0.6232 0.3332 0.3066 0.4015

3 0.5180 0.6625 0.3700 0.3394 0.4164

4 0.5180 0.6718 0.3954 0.3611 0.4301

5 0.5188 0.6761 0.4141 0.3743 0.4382

 Table 6.2 HV over time for NSGA-II with all the research datasets

The result from Table 6.2 and the relationship between time and HV

for NSGA-II is displayed by the following figures: 6.2, 6.3, 6.4, 6,5 and 6.6.

 Figure 6.2 HV over time for NSGA-II with fcbk163-dataset

83

10 0.5188 0.6836 0.4371 0.4182 0.4717

20 0.5188 0.6903 0.4570 0.4417 0.4949

30 0.5188 0.6914 0.4622 0.4538 0.5110

40 0.5188 0.6914 0.4631 0.4573 0.5211

50 0.5188 0.6920 0.4636 0.4583 0.5293

60 0.5188 0.6921 0.4643 0.4590 0.5384

70 0.5188 0.6922 0.4649 0.4605 0.5418

80 0.5188 0.6922 0.4651 0.4606 0.5464

90 0.5188 0.6922 0.4655 0.4606 0.5491

100 0.5188 0.6922 0.4655 0.4612 0.5512

110 0.5188 0.6923 0.4656 0.4612 0.5551

120 0.5188 0.6923 0.4656 0.4612 0.5551

130 0.5200 0.6925 0.4660 0.4617 0.5579

140 0.5200 0.6930 0.4667 0.4617 0.5595

150 0.5200 0.6934 0.4667 0.4617 0.5613

160 0.5200 0.6934 0.4672 0.4617 0.5617

170 0.5200 0.6934 0.4672 0.4618 0.5617

180 0.5200 0.6934 0.4672 0.4618 0.5617

200 0.5200 0.6934 0.4672 0.4618 0.5617

 Figure 6.3 HV over time for NSGA-II with 400-dataset

 Figure 6.4 HV over time for NSGA-II with 600-dataset

84

 Figure 6.5 HV over time for NSGA-II with 800-dataset

 Figure 6.6 HV over time for NSGA-II with 1000-dataset

2. IBEA Results

All HV values for IBEA were captured in Table 6.3 for all datasets.

There is also a small difference between values as applied to NSGA-II.

Despite the fcbk-163 dataset HV being stable from the first second, the HV

85

values for all datasets are stable by 30 seconds. The result means that the

minimum running time for NSGA-II and IBEA is the same.

 Table 6.3 HV over Time for IBEA with all the research datasets

From the mentioned above table the following Figures were generated

to describe the relation between time and HV: 6.7, 6.8, 6.9, 6,10 and 6.11

86

Time (s) Fcbk163-
dataset

400-dataset 600-dataset 800-dataset 1000-dataset

1 0.5073 0.5631 0.2925 0.4457 0.3830

2 0.5155 0.5905 0.3229 0.4552 0.3960

3 0.5167 0.6306 0.3614 0.4695 0.4165

4 0.5167 0.6543 0.3851 0.4968 0.4220

5 0.5167 0.6666 0.3924 0.5164 0.4330

10 0.5167 0.6812 0.4278 0.5506 0.4789

20 0.5188 0.6880 0.4444 0.5712 0.5086

30 0.5188 0.6896 0.4494 0.5791 0.5234

40 0.5188 0.6910 0.4534 0.5811 0.5350

50 0.5188 0.6919 0.4581 0.5840 0.5451

60 0.5205 0.6919 0.4612 0.5856 0.5495

70 0.5205 0.6921 0.4620 0.5858 0.5529

80 0.5205 0.6925 0.4625 0.5858 0.5558

90 0.5205 0.6925 0.4630 0.5859 0.5581

100 0.5205 0.6933 0.4632 0.5860 0.5589

110 0.5205 0.6933 0.4637 0.5865 0.5599

120 0.5205 0.6933 0.4638 0.5871 0.5618

130 0.5205 0.6933 0.4641 0.5875 0.5621

140 0.5205 0.6933 0.4643 0.5875 0.5628

150 0.5205 0.6933 0.4643 0.5876 0.5634

160 0.5205 0.6933 0.4643 0.5876 0.5634

170 0.5205 0.6933 0.4646 0.5876 0.5634

180 0.5205 0.6933 0.4646 0.5876 0.5637

200 0.5205 0.6934 0.4646 0.5876 0.5643

 Figure 6.7 HV over time for IBEA with fcbk163-dataset

 Figure 6.8 HV over time for IBEA with 400-dataset

87

 Figure 6.9 HV over time for IBEA with 600-dataset

 Figure 6.10 HV over time for IBEA with 800-dataset

88

 Figure 6.11 HV over time for IBEA with 1000-dataset

3. MOCell Results

The minimum execution time with a stable HV values for MOCell is

similar to previous NSGA-II and IBEA algorithms. It’s 1 second for the

fcbk163-dataset and it’s 30 for others. So far now, time is not better by

comparing one algorithm to another. The results for MOCell were captured in

Table 6.4 and the relation between time and HV is represented in the

following figures: 6.12, 6.13, 6.14, 6.15 and 6.16

89

Time (s) fcbk163-
dataset

400-dataset 600-dataset 800-dataset 1000-dataset

1 0.4874 0.5640 0.3031 0.4667 0.3870

2 0.4874 0.5808 0.3222 0.478 0.4028

3 0.4874 0.6142 0.3425 0.488 0.4075

4 0.4886 0.6305 0.3561 0.4981 0.4213

5 0.4890 0.6382 0.3688 0.5127 0.4316

10 0.4894 0.6649 0.4003 0.5358 0.4624

20 0.4894 0.6769 0.4216 0.5654 0.4994

30 0.4906 0.6836 0.4335 0.5746 0.5226

40 0.4906 0.6845 0.4363 0.5769 0.5348

50 0.4906 0.6852 0.4368 0.5769 0.5398

 Table 6.4 HV over Time for MOCell with all the research datasets

 Figure 6.12 HV over time for MOCell with fcbk163-dataset

90

60 0.4906 0.6852 0.4370 0.5782 0.5452

70 0.4906 0.6852 0.4379 0.579 0.5494

80 0.4906 0.6852 0.4383 0.5815 0.5505

90 0.4906 0.6861 0.4414 0.5815 0.5512

100 0.4906 0.6865 0.4423 0.5817 0.5522

110 0.4906 0.6870 0.4423 0.5817 0.5534

120 0.4906 0.6870 0.4423 0.5820 0.5539

130 0.4906 0.6870 0.4423 0.5820 0.5545

140 0.4906 0.6870 0.4428 0.5820 0.5554

150 0.4906 0.6879 0.4435 0.5830 0.5555

160 0.4906 0.6879 0.4435 0.5830 0.5555

170 0.4906 0.6879 0.4435 0.5830 0.5555

180 0.4906 0.6879 0.4435 0.5830 0.5555

200 0.4906 0.6934 0.4435 0.5830 0.5555

 Figure 6.13 HV over time for MOCell with 400-dataset

 Figure 6.14 HV over time for MOCell with 600-dataset

91

 Figure 6.15 HV over time for MOCell with 600-dataset

 Figure 6.16 HV over time for MOCell with 1000-dataset

4. SPEA2 Results

Same result for minimum execution time of SPEA2, by 30 second,

result is stable for all algorithms. It is represented in Table 6.5 and figures

6.17, 6.18, 6.19, 6.20 and 6.21.

92

 Table 6.5 HV over Time for SPEA2 with all the research datasets

93

Time (s) Fcbk163-
dataset

400-dataset 600-dataset 800-dataset 1000-dataset

1 0.5054 0.5643 0.2951 0.4417 0.3800

2 0.5127 0.6233 0.3287 0.4672 0.4058

3 0.5135 0.6518 0.3620 0.4979 0.4229

4 0.5136 0.6701 0.3860 0.5204 0.4421

5 0.5144 0.6721 0.3964 0.5300 0.4516

10 0.5157 0.6816 0.4191 0.5529 0.4915

20 0.5174 0.6886 0.4493 0.5705 0.5155

30 0.5182 0.6900 0.4579 0.5773 0.5292

40 0.5182 0.6907 0.4594 0.5797 0.5379

50 0.5182 0.6915 0.4606 0.5802 0.5487

60 0.5190 0.6915 0.4613 0.5821 0.5519

70 0.5195 0.6918 0.4621 0.5822 0.5570

80 0.5195 0.6924 0.4630 0.5822 0.5583

90 0.5195 0.6936 0.4633 0.5827 0.5594

100 0.5195 0.6940 0.4633 0.5833 0.5596

110 0.5195 0.6946 0.4642 0.5834 0.5607

120 0.5195 0.6962 0.4646 0.5834 0.5621

130 0.5195 0.6969 0.4651 0.584 0.5629

140 0.5195 0.6969 0.4653 0.5844 0.5636

150 0.5195 0.6972 0.4653 0.5844 0.5642

160 0.5195 0.6972 0.4653 0.5844 0.5648

170 0.5195 0.6972 0.4657 0.5845 0.5659

180 0.5195 0.6972 0.4668 0.5845 0.5662

200 0.5195 0.6934 0.467 0.5845 0.5670

 Figure 6.17 HV over time for SPEA2 with fcbk163-dataset

 Figure 6.18 HV over time for SPEA2 with 400-dataset

94

 Figure 6.19 HV over time for SPEA2 with 600-dataset

 Figure 6.20 HV over time for SPEA2 with 800-dataset

95

 Figure 6.21 HV over time for SPEA2 with 1000-dataset

To summarize the result from all above tables and figures, the

minimum required execution time for all algorithms is the same. It’s 30

second with all datasets and algorithms.

6.2 Available Time Impact on HV value
The target of this experiment is to study the impact of the available

time on the generated solutions quality. The available time could be defined as

the available time for manual test cases execution. This value is connected to

the problem definition itself, so once this value is changed for the same

dataset, the problem is considered as a new one. To illustrate this by example,

let say an available time for manual test cases execution is 160 hour. This

value could be a total release available time, or it could be the remaining time

at some point of the sprint. Hence, the prioritization has to respect that time. In

this case the algorithms have to calculate the fitness functions depending on

the available time value. The impact on fitness functions is considered as

constraint, as example, if the test cases required execution time is more than

the available time, then the coverage is different. As a result, the number of

test cases that have to be included in the generated solution is different

96

depending on the available time. Moreover, this affects the high priorities test

cases that might need more time. Therefore as mentioned previously, there is

an obvious impact of available execution time on fitness functions.

This experiment was designed to measure the solution quality with two

cases:

1. When the available time is a small value by comparing it to the

required time for including all test cases.

2. When the available time is a large value that is close to the

required time for including all test cases

The previous experiment in section 6.1 was done using an available

time in the middle of the total expected execution time. Therefore HV value

from the previous section is included for comparison purposes, then three

cases are considered. In this experiment, the same settings that were

mentioned in the previous experiment were used. As this second experiment

measured the HV value depending on the available time for the same dataset,

two datasets only were selected. Selection of datasets considered to study the

results on a small and large datasets as in the following :

- Small dataset using fcbk163-dataset: for this dataset, the total expected

execution time for all test cases is: 4365 (it doesn't matter if we

consider it as hour or minutes for the experiment testing). So, for the

first case, 500 is considered a small amount by comparing it with 4365,

so it was used on problem definition. On the other hand, 4000 is

considered as a close value to 4365, so it was used in the second case

with the problem definition.

- Large Dataset using 1000-dataset: the total expected execution time is

25312. Therefore for the first case of selecting a small value for

available time, 5000 was selected. While for the second case of

selecting a large value of available time, 20000 was selected for the

problem definition.

97

Two builds were executed per each mentioned dataset, available time

was assigned to the problem definition each time as in the following

screenshot:

 Figure 6.22 Assign the available time in problem definition

The screenshot was taken while doing the experiment of measuring

HV for dataset-1000 with large available time, which was 20,000. Other

problem definitions with comments are the other cases for this experiment.

The results from all executions have been registered in Table 6.6. In addition

to the results from the current experiment, Table 6.6 shows the HV values

from the previous section when the selected value of the available time is

between small and large selected values.

 Table 6.6 HV mean for different values of available time

98

Time NSGA II IBEA MOCell SPEA2

facebook163-dataset 500 0.8253 0.8241 0.8280 0.8449

facebook163-dataset 1,500 0.5130 0.5213 0.5031 0.5218

facebook163-dataset 4,000 0.0381 0.0384 0.0384 0.0384

1000-dataset 5,000 0.6737 0.6697 0.6895 0.7894

1000-dataset 13,000 0.4094 0.4140 0.4049 0.3832

1000-dataset 20,000 0.0468 0.0459 0.0515 0.1025

From the above table, it’s clear that adding a smaller value of available

time increased the HV values. While increasing the available time decreased

the HV values. We can also notice that the result is applied on all algorithms

and with both chosen datasets. The result is connected to the fact of using

available time as constraint. Small value of available time limited the number

of test cases that could be included in fitness functions. On the other hand,

increasing it gives a better chance to add more test cases, this means higher

complexity for the TCP problem.

The HV values for all builds of this experiment is represented on the

following boxplots figures, 6.23, 6.24, 6.25 and 6.26. Form all figures and by

considering the different scales on each boxplot, we can see that values are

close together for all algorithms.

 Figure 6.23 HV boxplot for small value of available

time with small dataset size

99

 Figure 6.24 HV boxplot for large value of available

time with small dataset size

 Figure 6.25 HV boxplot for small value of available time

with large dataset size

100

 Figure 6.26 HV boxplot for large value of available

time with large dataset size

For all algorithms and for both datasets, from boxplots, we can see that

for 30 runs the HV values are too close together. In addition, by comparing

each boxplot for the same dataset, we can see how increasing the available

time decreased the HV values for all algorithms. This means, once the

available time is close to the required time to all test cases, the HV is smaller.

For example, if the required time for a set of test cases is 300 hour, choosing a

small available time in the problem definition generates a high value of HV.

While choosing a large value of available time like 280 hour, decreases the

HV value.

To summarize the result from this experiment, increasing the

remaining time decreases the value of HV itself. While decreasing the

remaining time leads to large HV values.

101

6.3 Impact of remaining time on Algorithm
Execution time

By returning back to experiment 2 in section 6.2, there was an impact

of having a small or a large value of remaining time in the problem definition.

Having a small value has to increase the HV value regardless of the dataset

size. In this section a small value of remaining time was taken for one dataset

and for one algorithm. The target is to see if the remaining time has any

impact on the algorithm minimum execution time. As all algorithms have the

same minimum execution time from previous experiment results, then only

one algorithm is enough to do the study in the current experiment. The results

for execution time in the previous section show that no impact of the dataset

size on the minimum required execution time. Hence only one dataset has

been chosen in the current experiment, it’s the largest one 1000-dataset. Then

for this experiment study the NSGA-II algorithm has been selected and 500 as

a small value of available time was assigned to problem definition. The

following table 6.7 captured the resulting values of HV in the first column

with a timestamp of that value on the last column.

The time in the third column is printed in milliseconds, therefore we

can see how the HV has a high value from the beginning of execution. For

example, with the first record at 727 milliseconds, the HV was very high and

it’s close to 1. Therefore adding a high or a small stopping time as a stopping

condition doesn’t have an impact on HV. Since it started with a very high

value, giving an opportunity to the algorithm to produce a better solution is not

possible here. It reached the highest values from the beginning of execution

and it was close to 1.

As a result, the algorithm has a stable value of HV, then the minimum

required execution time of the algorithm is just milliseconds. On the other

hand, the available time on the previous experiment was something between

small and large values. Then the result for minimum execution time was 30

seconds for all algorithms and datasets. This means, when the algorithms have

102

more time as a constraint gives it better opportunity to find more solutions and

HV was not a high one from the beginning. So, increasing the stopping time as

was set to 30 second in the previous experiment affected the result. It gives the

algorithms an opportunity to continue finding new solutions and to enhance

the HV until having a stable value.

 Table 6.7 Captured HV when the remaining time is a small value

To summarize this section result, small amounts of remaining time leads to a

stable value of HV values in early milliseconds of execution. Then a small value of

execution time is enough to be selected as a stopping condition in this case. On the

other hand, increasing the remaining time, requires more execution time to reach a

stable value of HV.

6.4 Hypervolume (HV) Comparison
As all algorithms require the same minimum execution time regardless

of the dataset size then no one is better than another from time perspective. A

new experiment has been presented here to study the algorithms behaviour

from HV quality perspective. Hence the minimum execution time from section

6.1 was used as a stopping condition. In addition to 30 ms as a stopping

condition, 30 runs have been set to each execution with all datasets. This

103

allowed us to see if any algorithm outperformed the others from the solution

quality view point. For this experiment design, all algorithms common settings

were initialized with the same values. So the same default settings that were

described in Table 5.1 were used. The remaining time for all datasets is fixed

here to 2000. As a result, it was considered as a small value for some datasets.

While it is a large one for others. This has been reflected on the HV values for

different datasets, but it doesn’t have to affect the experiment objective.

Tables 6.8 and 6.9 represent the mean and median values for all builds with all

algorithms and datasets.

 Table 6.8 HV mean for 30 independent runs

 Table 6.9 HV median for 30 independent runs

From the above table, we can see a minor variation from one algorithm

to another with the same dataset. As a result we can’t consider any algorithm

104

NSGA II IBEA MOCell SPEA2

fcbk163-dataset 0.3761 0.3834 0.3595 0.3834

400-dataset 0.7960 0.7982 0.7957 0.8007

600-dataset 0.8488 0.8549 0.8528 0.8561

800-dataset 0.8799 0.8708 0.8739 0.8799

1000-dataset 0.8932 0.8951 0.8968 0.8898

NSGA II IBEA MOCell SPEA2

fcbk163-dataset 0.3754 0.3837 0.3591 0.3834

400-dataset 0.7968 0.7991 0.7939 0.7996

600-dataset 0.8496 0.8557 0.8510 0.8557

800-dataset 0.8812 0.8712 0.8737 0.8797

1000-dataset 0.8934 0.8942 0.8982 0.8893

is outperforming the others. For example, with a 1000-dataset, check the first

two decimal places for mean values, NSGA-II, IBEA and MOCell are 0.89.

The difference between SPEA2 is only 0.01.

The HV values are small for the fcbk163-dataset because the 2000 as

the remaining time is a large one. While the HV values for the 1000-dataset

are large as 2000 is a small remaining time value. This result was presented

previously on section 6.2.

The generated HV values by jMetal were used as input data to generate

several boxplots by RStudio for all builds. The fcbk163-dataset, 400-dataset,

600-dataset, 800-dataset and 1000-dataset are represented by figures: 6.27,

6.28, 6.29, 6.30 and 6.31.

 Figure 6.27 HV quality indicator for fcbk163-dataset

105

 Figure 6.28 HV quality indicator for 400-dataset

 Figure 6.29 HV quality indicator for 600-dataset

106

 Figure 6.30 HV quality indicator for 800-dataset

 Figure 6.31 HV quality indicator for 1000-dataset

Same observations and results that were generated depending on table

6.8 are also clear by boxplots. Therefore, from boxplots, it’s clear that values

107

are close together for all algorithms per dataset. The same algorithm has

higher value with a specific dataset, while it has a lower with another one. All

these differences don't make any sense since they are minor variations. From

the generated results we also can compare the max and min values for each

algorithm with the selected datasets, table 6.10 represents the results.

 Table 6.10 Max and min value for each algorithm with all datasets

108

Dataset Name Algorithms Max HV Min HV

fcbk163-dataset NSGA-II 0.3841 0.3688

IBEA 0.3867 0.3796

MOCell 0.3722 0.3534

SPEA2 0.3916 0.3772

400-dataset NSGA-II 0.8005 0.7909

IBEA 0.8030 0.7939

MOCell 0.8024 0.7917

SPEA2 0.8067 0.7959

600-dataset NSGA-II 0.8534 0.8389

IBEA 0.8607 0.8477

MOCell 0.8585 0.8454

SPEA2 0.8628 0.8486

800-dataset NSGA-II 0.8856 0.8715

IBEA 0.8743 0.8667

MOCell 0.8806 0.8676

SPEA2 0.8827 0.8770

1000-dataset NSGA-II 0.8972 0.8899

IBEA 0.9011 0.8917

MOCell 0.9027 0.8873

SPEA2 0.8925 0.8872

Based on the above table, we can see the exact min and max values for

each algorithm. For the first dataset which has the minimum number of test

cases, the MOCell has the minimum value, while the SPEA2 has the largest.

Same observation about the min and max values, the difference is small and

values are close together for the same dataset with all algorithms.

To summarize the result of this section, we can say that all algorithms

have similar values for HV with the same dataset. Hence no algorithm is better

than another to produce a better solution.

109

Chapter 7. Threats to Validity and
Conclusion

__

This chapter presents the validity threats for the conducted experiments

in section 1. After that, the final conclusion about the research and results has

been summarized in section 2. Finally, the possible future work has been

presented in the last section.

7.1 Threats to Validity
Several types of validity threats are connected with search based

software engineering problems and experiments. Therefore in this section

several threats have been listed in order to see if there is an impact for those

threats on the results and conclusion of this research. Some of these threats are

connected to the research nature, others for experiment or datasets as in the

following validity threats types:

- Conclusion Validity Threats

This threat type is connected with the relationship between

treatment and results [13]. For this research experiment, all selected

algorithms are genetic algorithms, therefore the four algorithms

generate a random population as an initial point. This randomly

generated population might lead to a bad start or a good one just by

chance. At the same time we can’t guarantee that the same randomly

initial generated population has been created in the next run. Therefore,

in order to avoid or at least to minimize the randomness effect on the

results, several runs were used per mentioned experiment in chapter 6.

Those runs have been chosen to be 30 independent runs, then the mean

was calculated for the 30 runs for doing analysis.

110

- Internal Validity Threats

This type of threat is connected with the fact that some factors

may have impact on the results while the research doesn’t have

awareness about them [13]. As an example in this research, the values

of algorithms parameters are the defaults. Those defaults values were

set by jMetal implementation, hence changing them may have an

impact on the results. On the other hand, parameter tuning was not

included in this experiment, therefore we can’t guarantee if there are

better or worst results in case parameter values were changed. Another

threat may be considered here is the code design, the experiments were

built on the current java implementation of jMetal. Therefore, if the

same experiments have been done using the python version of jMetal

or any other framework, different results might be generated.

- Construct Validity Threats

This is connected with the resulting outcome and the treatment,

or in other words, by the relation between theory and observations

[13]. In this research dataset was a challenge since there was no

available dataset for the research test cases prioritization problem. At

the same time, it was not possible to take actual datasets from available

companies. The reason is this research was connected with manual

testing, then those test cases are directly connected with the business.

And business in most cases is connected with paid services that can’t

be shared for the public. The solution for the research test cases

prioritization problem has built the dataset from available applications

for the public. Therefore, the Facebook app was selected for building a

dataset that is close to the real one. At the same time, specifying the

frontend components was done by me as a researcher, but I don’t have

111

access to the code. Hence, the frontend components might not be

exactly as specified for building the dataset. Another connected issue

with dataset is the need for having different datasets sizes and

characteristics. Therefore, the solution was creating random datasets

with random weights. Those weights also were created randomly and

they represent the priority for unknown components and business.

They are not actual datasets, but they have the same characteristics and

values that will have impact on calculating the fitness functions.

- External Validity Threats

Generalization of results and approach is connected with

external validity. In this research several datasets between 163 to 1000

test cases were generated. Then experiments included all generated

datasets to see the impact of size change on results. At the same time,

generalization of the approach is possible to several problems in

software engineering, specifically those problems that are connected

with weight or a need to create large datasets.

7.2 Conclusion

This research provided a framework for doing automated

prioritization of manual test cases that are going to be tested for the

first time. Those test cases are connected to component based frontend

framework with web application, therefore building the problem and

fitness functions considered this fact. Having this kind of prioritization

being more important when the test cases are a long list and no

previous history for them. Once there is any change in requirements or

finding some blockers with limited and sensitive time, it’s important to

re-prioritize the test cases. Automated prioritization at any stage

depending on the new needs and changes helps to include the high

112

priority test cases in early stages. Moreover, it helps to increase the

coverage with the available time. The proposed framework helps to

provide solutions that have the best values for the mentioned

objectives. In addition, the proposed framework helps the decision

makers to discover any violations on priorities and to exclude them

from the generated priorities.

Four algorithms and five datasets were included in experiments

of this research. They were all evaluated by HV as a quality indicator

for each generated solution. It displayed a close quality for all

algorithms with the same dataset. A small variance from one algorithm

to another between captured mean values of HV was found. Hence,

there is no algorithm that outperforms others from a quality

perspective.

Another measurement was taken for evaluating the

performance of each algorithm by execution time. Results have shown

that all algorithms have the same minimum required execution time for

having a stable HV value. The registered value for that execution time

for all algorithms is 30 second. On the other hand, with a small dataset

size, the stability needs only milliseconds. Another case that has

milliseconds as minimum execution time is having a very limited or a

small value of available time. This time is defined in the problem TCP

definition and it has been considered as a constraint. In this case, the

algorithms provide solutions with high HV value from the beginning

of execution.

7.3 Future Work

Three main ideas are available now for future work of this research:

1. Building a UI for the generated framework, by this idea, a UI

could be built to support the test cases documentation directly

to the framework instead of adding them by csv files. The UI

113

will also provide a method to add the front end components and

requirements priorities. This will help to automatically connect

the documented manual test cases with frontend components.

As a result, the weight will be automatically calculated instead

of doing this manually. This means the user will be required

only to add the test cases and to define components and their

priorities. After that, for any prioritization or when components

priorities change, all other required work for datasets will be

prepared automatically.

The UI also will be used to present the generated solutions and

the violations of test cases priorities. In addition, it will give the

user several input choices to change the available time, select

the algorithm or change the settings.

2. Building an API to integrate the generated framework with

other test cases management systems. This will provide the

chance to use the current systems with the generated

frameworks at the same platform.

3. The same test cases prioritization could be studied and a new

solution could be generated by Natural Language Processing.

This could be done since the test cases are being documented as

text for manual test cases. The new solution could be compared

by the current research solution and then new results may be

generated regarding quality or performance.

114

References

1. McLeod, Raymond. "Software Testing: Testing Across the Entire Software

Development Life Cycle." (2007).

2. Ruparelia, Nayan B. "Software development lifecycle models." ACM SIGSOFT

Software Engineering Notes 35.3 (2010): 8-13.

3. Räihä, Outi. "Applying genetic algorithms in software architecture design." Master's

thesis, 2008.

4. Barr, Earl T., Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. "The
oracle problem in software testing: A survey." IEEE transactions on software
engineering 41, no. 5 (2014): 507-525.

5. Sharma, Chayanika, Sangeeta Sabharwal, and Ritu Sibal. "A survey on software

testing techniques using genetic algorithm." arXiv preprint arXiv:1411.1154 (2014).

6. Hooda, Itti, and Rajender Singh Chhillar. "Software test process, testing types and

techniques." International Journal of Computer Applications 111.13 (2015).

7. Acharya, Shivani, and Vidhi Pandya. "Bridge between Black Box and White

Box–Gray Box Testing Technique." International Journal of Electronics and

Computer Science Engineering 2.1 (2012): 175-185.

8. Nidhra, Srinivas, and Jagruthi Dondeti. "Black box and white box testing techniques-a

literature review." International Journal of Embedded Systems and Applications

(IJESA) 2.2 (2012): 29-50.

9. Tulasiraman, Megala, Nivethitha Vivekanandan, and Vivekanandan Kalimuthu.

"Multi-objective Test Case Prioritization Using Improved Pareto-Optimal Clonal

Selection Algorithm." 3D Research 9.3 (2018): 32.

10. Watkins, John, and Simon Mills. Testing IT: an off-the-shelf software testing process.

Cambridge University Press, 2010.

11. Bass, Len, Paul Clements, and Rick Kazman. Software architecture in practice.

Addison-Wesley Professional, 2003.

12. Wu, Jin, and Shapour Azarm. "Metrics for quality assessment of a multiobjective

design optimization solution set." J. Mech. Des. 123.1 (2001): 18-25.

115

13. de Oliveira Barros, Márcio, and Arilo Cláudio Dias-Neto. "0006/2011-threats to

validity in search-based software engineering empirical studies." RelaTe-DIA 5.1

(2011).

14. Gligoric, Milos, et al. "An empirical evaluation and comparison of manual and

automated test selection." Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering. ACM, 2014.

15. Chernak, Yuri. "Validating and improving test-case effectiveness." IEEE software

18.1 (2001): 81-86.

16. Whalen, Michael W., et al. "Coverage metrics for requirements-based testing."

Proceedings of the 2006 international symposium on Software testing and analysis.

ACM, 2006.

17. Utting, Mark, Alexander Pretschner, and Bruno Legeard. "A taxonomy of

model-based testing." (2006).

18. Shahid, Muhammad, Suhaimi Ibrahim, and Mohd Naz’ri Mahrin. "A study on test

coverage in software testing." Advanced Informatics School (AIS), Universiti

Teknologi Malaysia, International Campus, Jalan Semarak, Kuala Lumpur, Malaysia

(2011).

19. Askarunisa, MS A., MS L. Shanmugapriya, and DR N. Ramaraj. "Cost and coverage

metrics for measuring the effectiveness of test case prioritization techniques."

INFOCOMP 9.1 (2010): 43-52.

20. Rothermel, Gregg, et al. "Prioritizing test cases for regression testing." IEEE

Transactions on software engineering 27.10 (2001): 929-948.

21. Srikanth, Hema, Laurie Williams, and Jason Osborne. "System test case prioritization

of new and regression test cases." Empirical Software Engineering, 2005. 2005

International Symposium on. IEEE, 2005.

22. Qu, Bo, et al. "Test case prioritization for black box testing." 31st Annual

International Computer Software and Applications Conference (COMPSAC 2007).

Vol. 1. IEEE, 2007.

23. Singh, Yogesh, et al. "Systematic literature review on regression test prioritization

techniques." Informatica 36.4 (2012).

116

24. Yoo, Shin, and Mark Harman. "Regression testing minimization, selection and

prioritization: a survey." Software Testing, Verification and Reliability 22.2 (2012):

67-120.

25. Elbaum, Sebastian, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test

cases for regression testing. Vol. 25. No. 5. ACM, 2000.

26. Bryce, Renée C., and Atif M. Memon. "Test suite prioritization by interaction

coverage." Workshop on Domain specific approaches to software test automation: in

conjunction with the 6th ESEC/FSE joint meeting. ACM, 2007.

27. Wong, W. Eric, et al. "A study of effective regression testing in practice."

PROCEEDINGS The Eighth International Symposium On Software Reliability

Engineering. IEEE, 1997.

28. Rothermel, Gregg, et al. "Test case prioritization: An empirical study." Proceedings

IEEE International Conference on Software Maintenance-1999 (ICSM'99).'Software

Maintenance for Business Change'(Cat. No. 99CB36360). IEEE, 1999.

29. Elbaum, Sebastian, Alexey G. Malishevsky, and Gregg Rothermel. "Test case

prioritization: A family of empirical studies." IEEE transactions on software

engineering 28.2 (2002): 159-182.

30. Kim, Jung-Min, and Adam Porter. "A history-based test prioritization technique for

regression testing in resource constrained environments." Proceedings of the 24th

international conference on software engineering. ACM, 2002.

31. Park, Hyuncheol, Hoyeon Ryu, and Jongmoon Baik. "Historical value-based approach

for cost-cognizant test case prioritization to improve the effectiveness of regression

testing." 2008 Second International Conference on Secure System Integration and

Reliability Improvement. IEEE, 2008.

32. Fazlalizadeh, Yalda, et al. "Incorporating historical test case performance data and

resource constraints into test case prioritization." International Conference on Tests

and Proofs. Springer, Berlin, Heidelberg, 2009.

33. Marijan, Dusica, Arnaud Gotlieb, and Sagar Sen. "Test case prioritization for

continuous regression testing: An industrial case study." 2013 IEEE International

Conference on Software Maintenance. IEEE, 2013.

117

34. Huang, Yu-Chi, Kuan-Li Peng, and Chin-Yu Huang. "A history-based cost-cognizant

test case prioritization technique in regression testing." Journal of Systems and

Software 85.3 (2012): 626-637.

35. Mogyorodi, Gary. "Requirements-based testing: an overview." Proceedings 39th

International Conference and Exhibition on Technology of Object-Oriented

Languages and Systems. TOOLS 39. IEEE, 2001.

36. Srikanth, Hema, Laurie Williams, and Jason Osborne. "System test case prioritization

of new and regression test cases." 2005 International Symposium on Empirical

Software Engineering, 2005.. IEEE, 2005.

37. Hou, Shan-Shan, et al. "Quota-constrained test-case prioritization for regression

testing of service-centric systems." 2008 IEEE International Conference on Software

Maintenance. IEEE, 2008.

38. Ramasamy, Krishnamoorthi, and Sahaaya Arul Mary. "Incorporating varying

requirement priorities and costs in test case prioritization for new and regression

testing." 2008 International Conference on Computing, Communication and

Networking. IEEE, 2008.

39. Krishnamoorthi, R., and SA Sahaaya Arul Mary. "Factor oriented requirement

coverage based system test case prioritization of new and regression test cases."

Information and Software Technology 51.4 (2009): 799-808.

40. Walcott, Kristen R., et al. "Timeaware test suite prioritization." Proceedings of the

2006 international symposium on Software testing and analysis. ACM, 2006.

41. Conrad, Alexander P., Robert S. Roos, and Gregory M. Kapfhammer. "Empirically

studying the role of selection operators duringsearch-based test suite prioritization."

Proceedings of the 12th annual conference on Genetic and evolutionary computation.

ACM, 2010.

42. Smith, Adam M., and Gregory M. Kapfhammer. "An empirical study of incorporating

cost into test suite reduction and prioritization." Proceedings of the 2009 ACM

symposium on Applied Computing. ACM, 2009.

43. Rummel, Matthew J., Gregory M. Kapfhammer, and Andrew Thall. "Towards the

prioritization of regression test suites with data flow information." Proceedings of the

2005 ACM symposium on Applied computing. ACM, 2005.

118

44. Henard, Christopher, et al. "Comparing white-box and black-box test prioritization."

2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).

IEEE, 2016.

45. Sampath, Sreedevi, et al. "Prioritizing user-session-based test cases for web

applications testing." 2008 1st International Conference on Software Testing,

Verification, and Validation. IEEE, 2008.

46. Rosen, L. S. R., and Leon Shklar. "Web Application Architecture: Principles,

Protocol and Practices." (2009).

47. Medvidovic, Nenad, and Richard N. Taylor. "Software architecture: foundations,

theory, and practice." Proceedings of the 32nd ACM/IEEE International Conference

on Software Engineering-Volume 2. ACM, 2010.Comparative

48. Gizas, Andreas, Sotiris Christodoulou, and Theodore Papatheodorou. "Comparative

evaluation of javascript frameworks." Proceedings of the 21st International

Conference on World Wide Web. ACM, 2012.

49. Mariano, Carl Lawrence. "Benchmarking JavaScript Frameworks." (2017).

50. Flanagan, David, and Gregor M. Novak. "Java-Script: The Definitive Guide." (1998):

41-44.

51.Elliott, Eric. Programming JavaScript applications: Robust web architecture with

node, HTML5, and modern JS libraries. " O'Reilly Media, Inc.", 2014.
52. Harman, Mark, and Bryan F. Jones. "Search-based software

engineering." Information and software Technology 43.14 (2001): 833-839.

53. Harman, Mark, S. Afshin Mansouri, and Yuanyuan Zhang. "Search based software

engineering: A comprehensive analysis and review of trends techniques and

applications." Department of Computer Science, King’s College London, Tech. Rep.

TR-09-03 (2009): 23.

54. Harman, Mark, S. Afshin Mansouri, and Yuanyuan Zhang. "Search-based software

engineering: Trends, techniques and applications." ACM Computing Surveys

(CSUR) 45.1 (2012): 11.

55. McMinn, Phil. "Search-based software testing: Past, present and future." Software

testing, verification and validation workshops (icstw), 2011 ieee fourth international

conference on. IEEE, 2011.

119

56. Harman, Mark. "The current state and future of search based software

engineering." 2007 Future of Software Engineering. IEEE Computer Society, 2007.

57. Survey of multi-objective optimization methods for engineering

58. evolutionary algorithms for solving multi-objective problems

59. Multi-objective optimization using genetic algorithms tutorial

60. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley &

Sons, Inc., 2001

61. Evolutionary Algorithms for Multiobjective Optimization- Methods and Applications

62. Deb, Kalyanmoy, et al. "A fast elitist non-dominated sorting genetic algorithm for

multi-objective optimization: NSGA-II." International conference on parallel problem

solving from nature. Springer, Berlin, Heidelberg, 2000.

63. Durillo, Juan J., and Antonio J. Nebro. "jMetal: A Java framework for multi-objective

optimization." Advances in Engineering Software 42.10 (2011): 760-771.

64. Khan, Mohd Ehmer, and Farmeena Khan. "Importance of software testing in software

development life cycle." International Journal of Computer Science Issues (IJCSI)

11.2 (2014): 120.

65. Saini, Gaurav, and Kestina Rai. "An analysis on objectives, importance and types of

software testing." International Journal of Computer Science and Mobile Computing

2.9 (2013): 18-23.

66. Ahamed, S. S. "Studying the feasibility and importance of software testing: An

Analysis." arXiv preprint arXiv:1001.4193(2010).

67. Zitzler, Eckart, and Lothar Thiele. "Multiobjective evolutionary algorithms: a

comparative case study and the strength Pareto approach." IEEE transactions on

Evolutionary Computation3.4 (1999): 257-271.

68. Zitzler, Eckart, Marco Laumanns, and Lothar Thiele. "SPEA2: Improving the strength

Pareto evolutionary algorithm." TIK-report 103 (2001).

69. Nebro, Antonio J., et al. "MOCell: A cellular genetic algorithm for multiobjective

optimization." International Journal of Intelligent Systems 24.7 (2009): 726-746.

70. Zitzler, Eckart, and Simon Künzli. "Indicator-based selection in multiobjective

search." International Conference on Parallel Problem Solving from Nature. Springer,

Berlin, Heidelberg, 2004.

120

 Appendix A

- Datasets Google Drive Link:

https://drive.google.com/drive/u/3/folders/1zIgIqLoLD-H7gG_63oAfxT-PVnO0d83S

- Thesis Github Link:

https://github.com/HibaMG/jMetal-master-2

Note: the project code is a private repository on Github therefore

please contact me to get access: hiba.mg.g@gmail.com

121

https://drive.google.com/drive/u/3/folders/1zIgIqLoLD-H7gG_63oAfxT-PVnO0d83S
https://github.com/HibaMG/jMetal-master-2

